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ABSTRACT 
 
The discrete cosine transform (DCT) is commonly used in signal processing, image processing, communication systems 
and control systems. We use two methods based on the algorithms of Clenshaw and Forsyth to compute the recursive 
DCT in parallel.  The symmetrical discrete cosine transform (SCT) is computed first and then it can be used as an 
intermediate tool to compute other forms of the DCT.  The advantage of the SCT is that both the forward SCT and its 
inverse can be computed by the same method and hardware implementation.  Although Clenshaw’s algorithm is the 
more efficient in computational complexity, it is not necessarily the more accurate one.  The computational accuracy of 
these algorithms is discussed. In addition, the front-to-back forms of Clenshaw and Forsyth’s algorithms are 
implemented in aCe C , a  parallel programming language. 

 
Keywords:  Discrete cosine transforms, symmetrical cosine transform, Clenshaw’s recurrence, Forsyth’s recurrence, 
parallel computing 

 
1.  INTRODUCTION 

 
The discrete cosine transform (DCT) is commonly used in signal processing, image processing, communication systems 
and control systems.  This paper will use two methods to compute the recursive DCT in parallel.  These two methods 
are based on the recursive algorithms of Forsythe [1] and Clenshaw [2, 3,4] for the evaluation of a Chebyshev sum of 
terms.  The essential computation in all these transforms is of the form  
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Initially, we will compute the symmetrical discrete cosine transform (SCT) [5,6] using both methods and then show 
how to use the SCT as an intermediate tool to compute the DCT-II.  The SCT of N+1 data points x(0), x(1) , ..., x(N-1), 
x(N) is given by 
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The inverse SCT is given by 
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where 
 

2

1
k m =  for m = 0, N and 1 otherwise 

2

1
k n =   for n = 0, N and 1 otherwise 

 
As can be seen from equations (2) and (3), both the forward SCT and its inverse transform can be computed by the same 
hardware implementation.  

 
The DCT-II and its inverse are given by  
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1

2
 and γ k  =1 for k≠ 0 

 
To convert the DCT-II form into the SCT form, we will use trigonometric identities to convert equation (2) into the 
form of equation (1)[2,6].  A new set of coefficients, )0(~y , )1(~y ,…, )1(~ −Ny , )(~ Ny , is computed from 

)0(y , )1(y ,…, )1( −Ny  and these new values are used in equation (1). 

 
The identity 2cos(a)cos(b) = cos(a+b) + cos(a-b) will be used in the following steps: 
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where )0(y)0(y~ = , )k(y)1k(y)k(y~ +−= for 1Nk1 −≤≤ ,  and )1N(y)N(y~ −= . 

 
Y(k) in equation (6) is now in the form of the equations (1) and (2).  The efficiency of the computation can be enhanced 
further if we use the property )cos()cos( xkx −= π when k is even and )cos()cos( xkx −−= π when k is odd. 
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The forward DCT now can be rewritten as: 
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This symmetry of the SCT leads to a more efficient computation since the computation for the cosine function or the 
multiplication is more expensive than the computation for additions.  
 
A similar analysis for the computation of the IDCT requires one less summation in equation (6) than the forward DCT 
and will not be repeated here. 
 
Since T0(x) =cos(0) = 1, T1(x) = cos(x) and Tk(x)= cos(kx) = 2cos(x)cos((k-1)x) – cos((k-2)x), we have 

)(xTn = )(cos nxn  for all n. Tn(x) is the thn  Chebyshev polynomial, the SCT can be seen as a particular value of a 
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2.  ALGORITHM FOR EVALUATING POLYNOMIALS 

 
Clenshaw and Forsyth presented methods for the evaluation of a polynomial, PN (x), represented by   
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for k = 2,3, …n. 
 
Clenshaw’s front–to-back (forward) algorithm is shown in Figure 3 and Forsyth’s algorithm is shown in Figure 4. 
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Figure 1: Clenshaw’s Algorithm [3] 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
Figure 2: Forsythe’s Algorithm [1] 

 
The recursive filter structures of the Clenshaw and Forsythe algorithms are shown in Figures 3 and 4.  These algorithms 
can be easily implemented in parallel.  In Appendix A, we show a parallel programming language program for the 
computation of Clenshaw and Forsythe’s algorithms. The program is implemented aCe C, a parallel programming 
language [6]. 
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Figure 3: Recursive structure of Clenshaw’s algorithm 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Recursive structure of Forsythe’s algorithm 
 
 

3.  NUMERICAL ACCURACY COMPARISONS 
 
Although Clenshaw’s algorithm is more efficient than Forsythe’s algorithm in terms of computational complexity, it is 
not necessarily the more accurate one.  The accuracy of these algorithms depends on the input data.  The computation of 
the direct implementation of equation (2) was done in double precision and was used as the reference for numerical 
accuracy. The mean square errors of the transform components (MSE) for both Forsyth’s and Clenshaw’s methods were 
calculated using a C program.   Both Forsythe’s and Clenshaw’s algorithms for the computation of the SCT were done 
single precision. 
 
Trials (10,000) were run on input data sequences of length 8, 16, 32, 64, 128, 512 and 1024 using uniformly distributed 
random integer values (0-255).  The cosine values were pre-computed to speed up the program’s run -time. Table 1 
shows the mean square error of the transform components for both methods.  As can be seen, our results show that 
Forsythe’s method has a lower MSE except for the trials with sequence length 16. 
 

Table 1: Mean Square Errors for random input sequences. 
 

Number of data 
points 

Clenshaw’s error Forsythe’s error 

8 5.5421e-010 3.6397e-010 
16 3.4568e-009 5.0782e-009 
32 4.0893e-009 2.1883e-009 
64 1.0247e-007 1.3114e-008 
128 4.4432e-008 2.9541e-008 
256 4.6080e-006 3.9177e-006 
512 1.4232e-005 1.2274e-005 
1024 2.4604e-005 1.8927e-005 
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Figure 5 shows the histograms of MSE for Clenshaw’s method and Forsythe’s methods using  16, 256, and 1024 data 
points.   

 
 (a) Histogram of errors:  Clenshaw  16 (b) Histogram of errors:  Forsythe 16 
 
 

 
 (c) Histogram of errors:  Clenshaw 256  (d) Histogram of errors:  Forsythe 256 
 

 
 (e) Histogram of errors:  Clenshaw’s 10 24 (f) Histogram of error:  Forsythe’s 10 24 
 
             Figure 5: Histogram of mean square errors in the computation of the SCT 
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4.  SUMMARY 

 
We compared the numerical accuracy of Clenshaw’s and Forsyth’s methods for the computation of the recursive 
symmetric discrete cosine transform.  Both computational methods are front-to-back and are easily implemented on 
parallel platforms and hardware.  When compared with Clenshaw’s method, the recursive part of Forsyth’s algorithm is 
more complex.  However, we found that Forsythe’s algorithm resulted in lower mean square errors than Clenshaw’s 
method except for input sequences of length 16.  Other DCT forms can be computed using the SCT transform as an 
intermediate step. 
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7.  APPENDIX A: a Ce C Program 
 
/*  1-D Discrete Cosine Transform, SCT 
aCe Program 
 
Maurice F. Aburdene 
John E. Dorband 
______________________________________________________________________________ 
 
1D DCT formula for N samples in y[]: 
 
 
Y(m)= sqrt(2/N) * km * SUM(n=0->N){ kn * y(n) * cos [ m*n*pi/N ] } 
 
 km = 1/sqrt(2) for m=0,N and 1 otherwise. 
 kn = 1/sqrt(2) for n=0,N and 1 otherwise. 
______________________________________________________________________________ 
*/ 
 
#define real float 
 
# define Direct   1 
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# define Clenshaw 1 
# define Forsyth  1 
 
#include <stdio.aHr> 
#include <math.aHr> 
 
#define N 4 
#define PI   (4*atan(1)) 
 
threads Z[N+1]; 
 
Z real V[N+1], T[N+1], b[N+1] ; 
 
/*initialize bundle variables*/ 
 
Z void inputdata( void ) { 
 int i; 
 /*Generates values*/ 
 for(i=0;i<=N;i++) { b[i]=1.0; } 
} 
 
Z real DCTrow ( real b[N+1] ) 
{ 
 
 real km, kn, value ; 
 int j,k; 
  
 km = kn = 1.0/sqrt(2); 
  
 value = 0.0 ; 
 for (j=0;j<=N;j++) { 
  b[j] = b[j] * cos($$i*j*PI/N); 
 } 
 for (j=0;j<=N;j++) { 
  if(($$i==0)||($$i==N)) b[j] = b[j] * km ; 
  if((j==0)||(j==N)) b[j] = b[j] * kn ; 
 } 
 for (j=0;j<=N;j++) { 
  value += b[j]; 
 } 
 value *= sqrt(2)/(sqrt(N)); 
 
 return value; 
} 
 
Z real DCTclenshaw ( real b[N+1] ) 
{ 
 real km, kn ; 
 int j,k; real Y, value ; 
 
 km = kn = 1.0/sqrt(2); 
 for (j=0;j<=N;j++) { 
  if(($$i==0)||($$i==N)) b[j] = b[j] * km ; 
  if((j==0)||(j==N)) b[j] = b[j] * kn ; 
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 } 
 
 Y = 2*cos($$i*PI/N) ; 
 V[0] = b[0] ; 
 V[1] = Y * V[0] + b[1] ; 
 for(k=2;k<=N;k++) { 
  V[k] = ( Y * V[k-1] - V[k-2] + b[k] ) ; 
 } 
  
 value = V[N-1] * cos($$i*PI*(N-1)/N) + (b[N]-V[N-2])*cos($$i*PI) ; 
 
 return value*(sqrt(((real)2)/N)); 
} 
 
Z real DCTforsyth ( real b[N+1] ) 
{ 
 real km, kn ; 
 int j,k; real Y, value ; 
 
 km = kn = 1.0/sqrt(2); 
 for (j=0;j<=N;j++) { 
  if(($$i==0)||($$i==N)) b[j] = b[j] * km ; 
  if((j==0)||(j==N)) b[j] = b[j] * kn ; 
 } 
 
 Y = 2*cos($$i*PI/N) ; 
 T[0] = 1; 
 V[0] = b[0] ; 
 T[1] = cos($$i*PI/N) ; 
 V[1] = V[0] + b[1]*T[1] ; 
 for(k=2;k<=N;k++) { 
  T[k] = Y * T[k-1] - T[k-2] ; 
  V[k] = V[k-1] + b[k]*T[k] ; 
 } 
  
 value = V[N] ; 
 
 return value*(sqrt(((real)2)/N)); 
} 
 
 
void main (){ 
 
 Z.{ 
  int i; real W; 
 
# if Direct 
  inputdata(); 
  W = DCTrow(b); 
printf("W[%d]=%e  ",$$i,W); MAIN.{ printf("\n"); } 
MAIN.{ printf("\n"); } 
  for(i=0;i<=N;i++) { b[i]=Z[i].W; } 
  W = DCTrow(b); 
printf("W[%d]=%e  ",$$i,W); MAIN.{ printf("\n"); } 
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MAIN.{ printf("\n"); } 
# endif 
 
# if Clenshaw 
  inputdata(); 
  W = DCTclenshaw(b); 
printf("W[%d]=%e  ",$$i,W); MAIN.{ printf("\n"); } 
MAIN.{ printf("\n"); } 
  for(i=0;i<=N;i++) { b[i]=Z[i].W; } 
  W = DCTclenshaw(b); 
printf("W[%d]=%e  ",$$i,W); MAIN.{ printf("\n"); } 
MAIN.{ printf("\n"); } 
# endif 
 
# if Forsyth 
  inputdata(); 
  W = DCTforsyth(b); 
printf("W[%d]=%e  ",$$i,W); MAIN.{ printf("\n"); } 
MAIN.{ printf("\n"); } 
  for(i=0;i<=N;i++) { b[i]=Z[i].W; } 
  W = DCTforsyth(b); 
printf("W[%d]=%e  ",$$i,W); MAIN.{ printf("\n"); } 
MAIN.{ printf("\n"); } 
# endif 
 
 } 
 
  
} 
 
/* 
for (k=0;k<=N;k++) { printf("X[%d][%d]=%e  ",$$i,k,X[k]); MAIN.{ printf("\n"); } } 
MAIN.{ printf("\n"); } 
for (k=0;k<=N;k++) { printf("X[%d][%d]=%e  ",$$i,k,X[k]); MAIN.{ printf("\n"); } } 
MAIN.{ printf("\n"); } 
for (k=0;k<=N;k++) { printf("X[%d][%d]=%e  ",$$i,k,X[k]); MAIN.{ printf("\n"); } } 
MAIN.{ printf("\n"); } 
printf("Y[%d]=%e  ",$$i,value); MAIN.{ printf("\n"); } 
MAIN.{ printf("\n"); } 
*/ 
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