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Abstract

We study the problem of imitation learning from
demonstrations of multiple coordinating agents.
One key challenge in this setting is that learn-
ing a good model of coordination can be difficult,
since coordination is often implicit in the demon-
strations and must be inferred as a latent vari-
able. We propose a joint approach that simulta-
neously learns a latent coordination model along
with the individual policies. In particular, our
method integrates unsupervised structure learn-
ing with conventional imitation learning. We il-
lustrate the power of our approach on a difficult
problem of learning multiple policies for fine-
grained behavior modeling in team sports, where
different players occupy different roles in the co-
ordinated team strategy. We show that having a
coordination model to infer the roles of players
yields substantially improved imitation loss com-
pared to conventional baselines.

1. Introduction
The areas of multi-agent planning and control have wit-
nessed a recent wave of strong interest due to the practical
desire to deal with complex real-world problems, such as
smart-grid control, autonomous vehicles planning, manag-
ing teams of robots for emergency response, among others.
From the learning perspective, (cooperative) multi-agent
learning is not a new area of research (Stone & Veloso,
2000; Panait & Luke, 2005). However, compared to the
progress in conventional supervised learning and single-
agent reinforcement learning, the successes of multi-agent
learning have remained relatively modest. Most notably,
multi-agent learning suffers from extremely high dimen-
sionality of both the state and actions spaces, as well as
relative lack of data sources and experimental testbeds.
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Figure 1. Our motivating example of learning coordinating be-
havior policies for team sports from tracking data. Red is the
attacking team, blue is the defending team, and yellow is the ball.

The growing availability of data sources for coordi-
nated multi-agent behavior, such as sports tracking data
(Bialkowski et al., 2014), now enables the possibility of
learning multi-agent policies from demonstrations, also
known as multi-agent imitation learning. One particularly
interesting aspect of domains such as team sports is that the
agents must coordinate. For example, in the professional
soccer setting depicted in Figure 1, different players must
coordinate to assume different roles (e.g., defend left field).
However, the roles and role assignment mechanism are un-
observed from the demonstrations. Furthermore, the role
for a player may change during the same play sequence. In
the control community, this issue is known as “index-free”
multi-agent control (Kingston & Egerstedt, 2010).

Motivated by these challenges, we study the problem of
imitation learning for multiple coordinating agents from
demonstrations. Many realistic multi-agent settings require
coordination among collaborative agents to achieve some
common goal (Guestrin et al., 2002; Kok et al., 2003). Be-
yond team sports, other examples include learning policies
for game AI, controlling teams of multiple robots, or mod-
eling collective animal behavior. As discussed above, we
are interested in settings where agents have access to the
outcome of actions from other agents, but the coordination
mechanism is neither clearly defined nor observed, which
makes the full state only partially observable.

We propose a semi-supervised learning framework that in-
tegrates and builds upon conventional imitation learning
and unsupervised, or latent, structure learning. The latent
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structure model encodes a coordination mechanism, which
approximates the implicit coordination in the demonstra-
tion data. In order to make learning tractable, we develop
an alternating optimization method that enables integrated
and efficient training of both individual policies and the
latent structure model. For learning individual policies,
we extend reduction-based single-agent imitation learn-
ing approaches into multi-agent domain, utilizing powerful
black-box supervised techniques such as deep learning as
base routines. For latent structure learning, we develop a
stochastic variational inference approach.

We demonstrate the effectiveness of our method in two set-
tings. The first is a synthetic experiment based on the pop-
ular predator-prey game. The second is a challenging task
of learning multiple policies for team defense in profes-
sional soccer, using a large training set1 of play sequences
illustrated by Figure 1. We show that learning a good la-
tent structure to encode implicit coordination yields signifi-
cantly superior imitation performance compared to conven-
tional baselines. To the best of our knowledge, this is the
first time an imitation learning approach has been applied to
jointly learn cooperative multi-agent policies at large scale.

2. Problem Formulation
In coordinated multi-agent imitation learning, we have K
agents acting in coordination to achieve a common goal (or
sequence of goals). Training data D consists of multiple
demonstrations of K agents. Importantly, we assume the
identity (or indexing) of the K experts may change from
one demonstration to another. Each (unstructured) set of
demonstrations is denoted by U “ tU1, . . . , UKu, where
Uk “ tut,ku

T
t“1 is the sequence of actions by agent k at

time t. Note that each set of demonstrations can have vary-
ing sequence length T. Let C “ tctu

T
t“1 be the context

associated with each demonstration sequence.

Policy Learning. Our ultimate goal is to learn a (largely)
decentralized policy, but for clarity we first present the
problem of learning a fully centralized multi-agent pol-
icy. Following the notation of (Ross et al., 2011), let
~πp~sq :“ ~a denote the joint policy that maps the joint
state, ~s “ rs1, . . . , sKs, of all K agents into K actions
~a “ ra1, . . . , aKs. The goal is to minimize imitation loss:

Limitation “ E~s„d~π r`p~πp~sqqs ,

where d~π denotes the distribution of states experienced by
joint policy ~π and ` is the imitation loss defined over the
demonstrations (e.g., squared loss for deterministic poli-
cies, or cross entropy for stochastic policies).

The decentralized setting decomposes the joint policy ~π “

1Data at http://www.stats.com/data-science/
and see video result at http://hoangminhle.github.io

rπ1, . . . , πKs into K policies, each tailored to a specific
agent index or “role”.2 The loss function is then:

Limitation “
K
ÿ

k“1

Es„dπk r`pπkpskqqs .

Black-Box Policy Classes. In order to leverage powerful
black-box policy classes such as random forests and deep
learning, we take a learning reduction approach to training
~π. One consequence is that the state space representation
s “ rs1, . . . , sKs must be consistently indexed, e.g., agent
k in one instance must correspond to agent k in another in-
stance. This requirement applies for both centralized and
decentralized policy learning, and is often implicitly as-
sumed in prior work on multi-agent learning. A highly re-
lated issue arises in distributed control of index-free coordi-
nating robots, e.g., to maintain a defined formation (Kloder
& Hutchinson, 2006; Kingston & Egerstedt, 2010).

Motivating example: Soccer Domain. Consider the task of
imitating professional soccer players, where training data
includes play sequences from different teams and games.
Context C corresponds to the behavior of the opposing
team and the ball. The data includes multiple sequences
of K-set of trajectories U “ tU1, U2, . . . , UKu, where the
actual identity of player generating Uk may change from
one demonstration to the next.

One important challenge for black-box policy learning is
constructing an indexing mechanism over the agents to
yield a consistent state representation. For example, the
same index should correspond to the “left defender” in all
instances. Otherwise, the inputs to the policy will be incon-
sistent, making learning difficult if not impossible. Note
that barring extensive annotations or some heuristic rule-
based definitions, it is unnatural to quantitatively define
what makes a player “left defender”. In addition, even if
we had a way to define who the “left defender” is, he may
not stay in the same role during the same sequence.

Role-based Indexing. We address index-free policy learn-
ing via role learning and role-based index assignment. To
motivate our notion of role, let’s first consider the sim-
plest indexing mechanism: one could equate role to agent
identity. However, the data often comes from various se-
quences, with heterogeneous identities and teams of agents.
Thus instead of learning identity-specific policies, it is
more natural and data-efficient to learn a policy per role.
However, a key challenge in learning policies directly is
that the roles are undefined, unobserved, and could change
dynamically within the same sequence. We thus view learn-
ing the coordination, via role assignment, as an unsuper-
vised structured prediction problem.

2It is straightforward to extend our formulation to settings
where multiple agents can occupy the same role, and where not
all roles are occupied across all execution sequences.

http://www.stats.com/data-science/
http://hoangminhle.github.io
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Figure 2. Alternating stochastic optimization training scheme for
our semi-supervised structure regularization model.

Coordination via Structured Role Assignment. Instead
of handcrafting the definition of roles, we learn the roles
in an unsupervised fashion, without attaching any semantic
labels to the roles. At the same time, role transition should
obey certain structural regularity, due to coordination. This
motivates using graphical models to represent the coordi-
nation structure.

Coordinated Policy Learning. We formulate the indexing
mechanism as an assignment function A which maps the
unstructured set U and some probabilistic structured model
q to an indexed set of trajectory A rearranged from U , i.e.,

A : tU1, .., UKu ˆ q ÞÑ rA1, .., AKs ,

where the set tA1, .., AKu ” tU1, .., UKu. We view q as
a latent variable model that infers the role assignments for
each set of demonstrations. Thus, q drives the indexing
mechanismA so that state vectors can be consistently con-
structed to facilitate optimizing for the imitation loss.

We employ entropy regularization, augmenting the imita-
tion loss with some low entropy penalty (Grandvalet et al.,
2004; Dudik et al., 2004), yielding our overall objective:

min
π1,..,πK ,A

K
ÿ

k“1

Esk„dπk r`pπkpskqq|A,Ds´λHpA|Dq (1)

where both imitation loss and entropy are measured with
respect to the state distribution induced by the policies, and
D is training data. This objective can also be seen as maxi-
mizing the mutual information between latent structure and
observed trajectories (Krause et al., 2010).

3. Learning Approach
Optimizing (1) is challenging for two reasons. First, be-
yond the challenges inherited from single-agent settings,
multi-agent imitation learning must account for multi-
ple simultaneously learning agents, which is known to
cause non-stationarity for multi-agent reinforcement learn-
ing (Busoniu et al., 2008). Second, the latent role assign-
ment model, which forms the basis for coordination, de-
pends on the actions of the learning policies, which in turn
depend on the structured role assignment.

Algorithm 1 Coordinated Multi-Agent Imitation Learning

Input: Multiple unstructured trajectory sets U “ tU1, . . . , UKu
with Uk “ tut,kuTt“1 and context C “ tctuTt“1.

Input: Graphical model q with global/local parameters θ and z.
Input: Initialized policies πk, k “ 1, . . . ,K
Input: Step size sequence ρn, n “ 1, 2, . . .
1: repeat
2: rA1, . . . , AKs Ð AssigntU1, . . . , UK |qpθ, zqu
3: rπ1, . . . , πKs Ð Learn rA1, . . . , AK , Cs

4: Roll-out π1, . . . , πK to obtain pA1, . . . , pAK
5: Ak Ð pAk @k

(Alternatively: Ak Ð pAk with prob η for η Ñ 1)
6: qpθ, zq Ð LearnStructuretA1, . . . , AK , C, θ, ρnu
7: until No improvement on validation set

output K policies π1, π2, . . . , πK

We propose an alternating optimization approach to solving
(1), summarized in Figure 2. The main idea is to integrate
imitation learning with unsupervised structure learning by
taking turns to (i) optimize for imitation policies while fix-
ing a structured model (minimizing imitation loss), and (ii)
re-train the latent structure model and reassign roles while
fixing the learning policies (maximizing role assignment
entropy). The alternating nature allows us to circumvent
the circular dependency between policy learning and latent
structure learning. Furthermore, for (i) we develop a stable
multi-agent learning reduction approach.

3.1. Approach Outline

Algorithm 1 outlines our framework. We assume the latent
structure model for computing role assignments is formu-
lated as a graphical model. The multi-agent policy training
procedure Learn utilizes a reduction approach, and can
leverage powerful off-the-shelf supervised learning tools
such as deep neural networks (Hochreiter & Schmidhuber,
1997). The structure learning LearnStructure and
role assignment Assign components are based on graphi-
cal model training and inference. For efficient training, we
employ alternating stochastic optimization (Hoffman et al.,
2013; Johnson & Willsky, 2014; Beal, 2003) on the same
mini-batches. Note that batch training can be deployed
similarly, as illustrated by one of our experiments.

We interleave the three components described above into
a complete learning algorithm. Given an initially unstruc-
tured set of training data, an initialized set of policies, and
prior parameters of the structure model, Algorithm 1 per-
forms alternating structure optimization on each mini-batch
(size 1 in Algorithm 1).

• Line 2: Role assignment is performed on trajectories
tA1, . . . , AKu by running inference procedure (Algo-
rithm 4). The result is an ordered set rA1, . . . , AKs,
where trajectory Ak corresponds to policy πk.

• Line 3-5: Each policy πk is updated using joint multi-
agent training on the ordered set rA1, . . . , AK , Cs
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(Algorithm 2). The updated models are executed to
yield a rolled-out set of trajectories, which replace the
previous set of trajectories tAku.

• Line 6: Parameters of latent structured model are up-
dated from the rolled-out trajectories (Algorithm 3).

The algorithm optionally includes a mixing step on line
5, where the rolled-out trajectories may replace the train-
ing trajectories with increasing probability approaching 1,
which is similar to scheduled sampling (Bengio et al.,
2015), and may help stabilize learning in the early phase
of the algorithm. In our main experiment, we do not notice
a performance gain using this option.

3.2. Joint Multi-Agent Imitation Learning

In this section we describe the Learn procedure for multi-
agent imitation learning in Line 3 of Algorithm 1. As
background, for single agent imitation learning, reduction-
based methods operate by iteratively collecting a new data
set Dn at each round n of training, consisting of state-
action pairs pst, a˚t q where a˚t is some optimal or demon-
strated action given state st. A new policy can be formed
by (i) combining a new policy from this data set Dn with
previously learned policy π (Daumé III et al., 2009) or (ii)
learning a new policy π directly from the data set formed by
aggregating D1, . . . ,Dn (Ross et al., 2011). Other variants
exist although we do not discuss them here.

The intuition behind the iterative reduction approach is to
prevent a mismatch in training and prediction distributions
due to sequential cascading errors (also called covariate-
shift). The main idea is to use the learned policy’s own
predictions in the construction of subsequent states, thus
simulating the test-time performance during training. This
mechanism enables the agent to learn a policy that is ro-
bust to its own mistakes. Reduction-based methods also
accommodate any black-box supervised training subrou-
tine. We focus on using expressive function classes such
as Long Short-Term Memory networks (LSTM) (Hochre-
iter & Schmidhuber, 1997) as the policy class.3

Algorithm 2 outlines the Learn procedure for stable
multi-agent imitation learning. Assume we are given
consistently indexed demonstrations A “ rA1, . . . , AKs,
where each Ak “ tat,ku

T
t“1 corresponds action of pol-

icy πk. Let the corresponding expert action be a˚t,k. To
lighten the notation, we denote the per-agent state vector
by st,k “ ϕkprat,1, . . . , at,k, . . . , at,K , ctsq

4

3Note that conventional training of LSTMs does not address
the cascading error problem. While LSTMs are very good at
sequence-to-sequence prediction tasks, they cannot naturally deal
with the drifting of input state distribution drift caused by action
output feedback in dynamical systems (Bengio et al., 2015).

4Generally, state vector st,k of policy πk at time t can be con-
structed as st,k “ rφkpra1:t,1, c1:tsq, . . . , φkpra1:t,K , c1:tsqs

Algorithm 2 Joint Multi-Agent Imitation Learning
LearnpA1, A2, . . . , AK , Cq

Input: Ordered actions Ak “ tat,kuTt“1 @k, context tctuTt“1

Input: Initialized policies π1, . . . , πK
Input: base routine TrainpS,Aq mapping state to actions
1: Set increasing prediction horizon j P t1, . . . , T u
2: for t “ 0, j, 2j, . . . , T do
3: for i “ 0, 1, . . . , j ´ 1 do
4: Roll-out ât`i,k “ πkpŝt`i´1,kq @ agent k
5: Cross-update for each policy k P t1, . . . ,Ku

ŝt`i,k “ ϕk prât`i,1, . . . , ât`i,k, . . . , ât`i,K , ct`isq
6: end for
7: Policy update for all agent k

πk Ð Trainptŝt`i,k, a
˚
t`i`1,ku

j
i“0q

8: end for
output K updated policies π1, π2, . . . , πK

Algorithm 2 employs a roll-out horizon j, which divides
the entire trajectory into T {j segments. The following hap-
pens for every segment:

• Iteratively perform roll-out at each time step i for all
K policies (line 4) to obtain actions tpai,ku.

• Each policy simultaneously updates its state psi,k, us-
ing the prediction from all other policies (line 5).

• At the end of the current segment, all policies are up-
dated using the error signal from the deviation be-
tween predicted pai,k versus expert action a˚i,k, for all i
along the sub-segment (line 7).

After policy updates, the training moves on to the next j-
length sub-segment, using the freshly updated policies for
subsequent roll-outs. The iteration proceeds until the end
of the sequence is reached. In the outer loop the roll-out
horizon j is incremented.

Two key insights behind our approach are:

• In addition to the training-prediction mismatch issue
in single-agent learning, each agent’s prediction must
also be robust to imperfect predictions from other
agents. This non-stationarity issue also arises in multi-
agent reinforcement learning (Busoniu et al., 2008)
when agents learn simultaneously. We perform joint
training by cross-updating each agent’s state using
previous predictions from other agents.

• Many single-agent imitation learning algorithms as-
sume the presence of a dynamic oracle to provide one-
step corrections a˚t along the roll-out trajectories. In
practice, dynamic oracle feedback is very expensive
to obtain and some recent work have attempted to re-
lax this requirement (Le et al., 2016; Ho & Ermon,
2016). Without dynamic oracles, the rolled-out trajec-
tory can deviate significantly from demonstrated tra-
jectories when the prediction horizon j is large (« T ),
leading to training instability. Thus j is gradually in-
creased to allow for slowly learning to make good se-
quential predictions over longer horizons.
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For efficient training, we focus on stochastic optimiza-
tion, which can invoke base routine Train multiple times
and thus naturally accommodates varying j. Note that the
batch-training alternatives to Algorithm 2 can also employ
similar training schemes, with similar theoretical guaran-
tees lifted to the multi-agent case. The Appendix shows
how to use DAgger (Ross et al., 2011) for Algorithm 2,
which we used for our synthetic experiment.

3.3. Coordination Structure Learning

The coordination mechanism is based on a latent structured
model that governs the role assignment. The training and
inference procedures seek to address two main issues:

• LearnStructure: unsupervised learning a proba-
bilistic role assignment model q.

• Assign: how q informs the indexing mechanism so
that unstructured trajectories can be mapped to struc-
tured trajectories amenable to Algorithm 2.

Given an arbitrarily ordered set of trajectories U “

tU1, . . . , UK , Cu, let the coordination mechanism under-
lying each such U be governed by a true unknown model
p, with global parameters θ. We suppress the agent/policy
subscript and consider a generic featurized trajectory xt “
rut, cts @t. Let the latent role sequence for the same agent
be z “ z1:T . At any time t, each agent is acting according
to a latent role zt „ Categoricalt1̄, 2̄, . . . , K̄u, which
are the local parameters to the structured model.

Ideally, role and index asignment can be obtained by cal-
culating the true posterior ppz|x, θq, which is often in-
tractable. We instead aim to approximate ppz|x, θq by a
simpler distribution q via techniques from stochastic vari-
ational inference (Hoffman et al., 2013), which allows for
efficient stochastic training on mini-batches that can natu-
rally integrate with our imitation learning subroutine.

In variational inference, posterior approximation is often
cast as optimizing over a simpler model classQ, via search-
ing for parameters θ and z that maximize the evidence
lower bound (ELBO) L:

L pqpz, θqq fi Eq rln ppz, θ, xqs ´ Eq rln qpz, θqs ď ln ppxq

Maximizing L is equivalent to finding q P Q to minimize
the KL divergence KL pqpz, θ|xq||ppz, θ|xqq. We focus on
the structured mean-field variational family, which factor-
izes q as qpz, θq “ qpzqqpθq. This factorization breaks the
dependency between θ and z, but not between single latent
states zt, unlike variational inference for i.i.d data (Kingma
& Welling, 2013).

3.3.1. TRAINING TO LEARN MODEL PARAMETERS

The procedure to learn the parameter of our structured
model is summarized in Algorithm 3. Parameter learning

Algorithm 3 Structure Learning
LearnStructure tU1, . . . , UK , C, θ, ρu ÞÑ qpθ, zq

Input: Xk “ txt,kuTt“1 “ trut,k, ctsu @t, k.X “ tXku
K
k“1

Graphical model parameters θ, stepsize ρ
1: Local update: compute qpzq via message-passing while fix-

ing θ (See Appendix for derivations)
2: Global parameter update: via natural gradient ascent
θ Ð θp1´ ρq ` ρpθprior ` b

JEqpzq rtpz, xqsq
output Updated model qpθ, zq “ qpθqqpzq

proceeds via alternating updates over the factors qpθq and
qpzq, while keeping other factor fixed. Stochastic varia-
tional inference performs such updates efficiently in mini-
batches. We slightly abuse notations and overload θ for the
natural parameters of global parameter θ in the exponential
family. Assuming the usual conjugacy in the exponential
family, the stochastic natural gradient takes a convenient
form (line 2 of Algo 3, and derivation in Appendix), where
tpz, xq is the vector of sufficient statistics, b is a vector of
scaling factors adjusting for the relative size of the mini-
batches. Here the global update assumes optimal local up-
date qpzq has been computed.

Fixing the global parameters, the local updates are based
on message-passing over the underlying graphical model.
The exact mathematical derivation depends on the specific
graph structure. The simplest scenario is to assume inde-
pendence among zt’s, which resembles naive Bayes. In our
experiments, we instead focus on Hidden Markov Models
to capture first-order dependencies in role transitions over
play sequences. In that case, line 1 of Algorithm 3 resem-
bles running the forward-backward algorithm to compute
the update qpzq. The forward-backward algorithm in the
local update step takes OpK2T q time for a chain of length
T and K hidden states. For completeness, derivation of
parameter learning for HMMs is included in the Appendix.

3.3.2. INFERENCE FOR ROLE AND INDEX ASSIGNMENT

We can compute two types of inference on a learned q:

Role inference. Compute the most likely role sequence
tzt,ku

T
t“1 P t1̄, . . . , K̄u

T , e.g., using Viterbi (or dynamic
programming-based forward message passing for graph
structures). This most likely role sequence for agent k,
which is the low-dimensional representation of the coordi-
nation mechanism, can be used to augment the contextual
feature tctuTt“1for each agent’s policy training.

Role-based Index Assignment Transform the unstruc-
tured set U into an ordered set of trajectories A to facilitate
the imitation learning step. This is the more important task
for the overall approach. The intuitive goal of an index-
ing mechanism is to facilitate consistent agent trajectory to
policy mapping. Assume for notational convenience that
we want index k assigned to an unique agent who is most
likely assuming role k̄. Our inference technique rests on the
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Algorithm 4 Multi-Agent Role Assignment
Assign tU1, . . . , UK |qu ÞÑ rA1, . . . , AKs

Input: Approximate inference model q. Unordered trajectories
U “ tUku

K
k“1.

1: Calculate cost matrix M P RKˆK per equation 2
2: AÐ MinCostAssignmentpMq

output Ak “ UApkq @k “ 1, 2, . . . ,K

well-known Linear Assignment Problem (Papadimitriou &
Steiglitz, 1982), which is solved optimally via the Kuhn-
Munkres algorithm. Specifically, construct the cost matrix
M as:

M “M1 dM2 (2)

M1 “
“

qptxt,ku|zt,k “ k̄q
‰

“

«

T
ź

t“1

qpxt,k|zt,k “ k̄q

ff

M2 “
“

ln qptxt,ku|zt,k “ k̄q
‰

“

«

T
ÿ

t“1

ln qpxt,k|zt,k “ k̄q

ff

where k “ 1, . . . ,K, k̄ “ 1̄, . . . , K̄,d is the Hadamard
product, and matrices M1,M2 take advantage of the
Markov property of the graphical model. Now solving
the linear assignment problem for cost matrix M , we ob-
tain the matching A from role k̄ to index k, such that the
total cost per agent is minimized. From here, we rear-
range the unordered set tU1, . . . , UKu to the ordered se-
quence rA1, . . . , AKs ” rUAp1q, . . . , UApKqs according to
the minimum cost mapping.

To see why this index assignment procedure results in an
increased entropy in the original objective (1), notice that:

HpA|Dq « ´
K
ÿ

k̄“1

P pk̄qqpApAkq “ k̄q log qpApAkq “ k̄q

“ ´
1

K

K
ÿ

k̄“1

Mpk̄, kq,

where we assume each latent role k̄ has equal probability.
The RHS increases from the linear assignment and conse-
quent role assignment procedure. Our inference procedure
to perform role assignment is summarized in Algorithm 4.

4. Experiments
We present empirical results from two settings. The first is
a synthetic setting based on predator-prey, where the goal
is to imitate a coordinating team of predators. The second
is a large-scale imitation learning setting from player tra-
jectores in professional soccer games, where the goal is to
imitate defensive team play.

4.1. Predator-Prey Domain

Setting. The predator-prey problem, also frequently called
the Pursuit Domain (Benda, 1985), is a popular setting for

multi-agent reinforcement learning. The traditional setup
is with four predators and one prey, positioned on a grid
board. At each time step, each agent has five moves:

Figure 3.

N,S,E,W or no move. The
world is toroidal: the agents
can move off one end of
the board and come back
on the other end. Agents
make move simultaneously,
but two agents cannot oc-
cupy the same position, and
collisions are avoided by assigning a random move priority
to the agents at each time step. The predators can capture
the prey only if the prey is surrounded by all four preda-
tors. The goal of the predators is to capture the prey as fast
as possible, which necessarily requires coordination.

Data. The demonstration data is collected from 1000 game
instances, where four experts, indexed 1 to 4, are prescribed
the consistent and coordinated role as illustrated in the cap-
ture state of Figure 3. In other words, agent 1 would at-
tempt to capture the prey on the right hand side, which al-
lows for one fixed role for each expert throughout the game.
However, the particular role assignment is hidden from the
imitation learning task. Each expert is then exhaustively
trained using Value Iteration (Sutton & Barto, 1998) in the
reinforcement learning setting, with the reward of 1 if the
agent is in the position next to the prey according to its de-
fined role, and 0 otherwise. A separate set of 100 games
was collected for evaluation. A game is terminated after
50 time steps if the predators fail to capture the prey. In
the test set, the experts fail to capture the prey in 2% of the
games, and on average take 18.3 steps to capture the prey.

Experiment Setup. For this experiment, we use the batch
version of Algorithm 1 (see appendix) to learn to imitate
the experts using only demonstrations. Each policy is rep-
resented by a random forest of 20 trees, and were trained
over 10 iterations. The expert correction for each rolled-out
state is collected via Value Iteration. The experts thus act as
dynamic oracles, which result in a multi-agent training set-
ting analogous to DAgger (Ross et al., 2011). We compare
two versions of multi-agent imitation learning:

• Coordinated Training. We use our algorithm, with
the latent structure model represented by a discrete
Hidden Markov Model with binomial emission. We
use Algorithm 4 to maximize the role consistency of
the dynamic oracles across different games.

• Unstructured Training. An arbitrary role is assigned
to each dynamic oracle for each game, i.e., the agent
index is meaningless.

In both versions, training was done using the same data ag-
gregation scheme and batch training was conducted using
the same random forests configuration.
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Figure 4. Comparing performance in Predator-Prey between our
approach and unstructured multi-agent imitation learning, as a
function of the number of training rounds. Our approach demon-
strates both significantly lower failure rates as well as lower av-
erage time to success (for successful trials).

Results. Figure 4 compares the test performance of our
method versus unstructured multi-agent imitation learning.
Our method quickly approaches expert performance (av-
erage 22 steps with 8% failure rate in the last iteration),
whereas unstructured multi-agent imitation learning perfor-
mance did not improve beyond the first iteration (average
42 steps with 70% failure rate). Note that we even gave the
unstructured baseline some advantage over our method, by
forcing the prey to select the moves last after all predators
make decisions (effectively making the prey slower). With-
out this advantage, the unstructured policies fail to capture
the prey almost 100% of the time. Also, if the same restric-
tion is applied to the policies obtained from our method,
performance would be on par with the experts (100% suc-
cess rate, with similar number of steps taken).

4.2. Multi-agent Imitation Learning for Soccer

Setting. Soccer is a popular domain for multi-agent learn-
ing. RoboCup, the robotic and simulation soccer platform,
is perhaps the most popular testbed for multi-agent rein-
forcement learning research to date (Stone, 2016). The
success of MARL has been limited, however, due to the ex-
tremely high dimensionality of the problem. In this experi-
ment, we aim to learn multi-agent policies for team soccer
defense, based on tracking data from real-life professional
soccer (Bialkowski et al., 2014).

Data. We use the tracking data from 45 games of real
professional soccer from a recent European league. The
data was chunked into sequences with one team attacking
and the other defending. Our goal is to learn up to 10 poli-
cies for team defense (11 players per team, minus the goal
keeper). The training data consists of 7500 sets of trajec-
tories A “ tA1, . . . , A10u , where Ak “ tat,kuTt“1 is the
sequence of positions of one defensive player, and C is the

Figure 5. Experimental results on soccer domain. We see that us-
ing coordination substantially improves the imitation loss, and
that the decentralized policy is comparable to the centralized.

context consisting of opponents and the ball. Overall, there
are about 1.3 million frames at 10 frames per second. The
average sequence length is 176 steps, and the maximum is
1480.

Experiment Setup. Each policy is represented by a re-
current neural network structure (LSTM), with two hid-
den layers of 512 units each. As LSTMs generally require
fixed-length input sequences, we further chunk each tra-
jectory into sub-sequences of length 50, with overlapping
window of 25 time steps. The joint multi-agent imitation
learning procedure follows Algorithm 2 closely. In this set-
up, without access to dynamic oracles for imitation learn-
ing in the style of SEARN (Daumé III et al., 2009) and
DAgger (Ross et al., 2011), we gradually increase the hori-
zon of the rolled-out trajectories from 1 to 10 steps look-
ahead. Empirically, this has the effect of stabilizing the
policy networks early in training, and limits the cascading
errors caused by rolling-out to longer horizons.

The structured model component is learned via stochastic
variational inference on a continuous HMM, where the per-
state emission distribution is a mixture of Gaussians. Train-
ing and inference operate on the same mini-batches used
for joint policy learning.

We compare against two variations. The first employs cen-
tralized policy that aggregates the state vectors of all de-
centralized learner and produces the actions for all players,
i.e., a multi-task policy. The centralized approach generally
requires more model parameters, but is potentially much
more accurate. The second variation is to not employ joint
multi-agent training: we modify Algorithm 2 to not cross-
update states between agents, and each role is trained con-
ditioned on the ground truth of the other agents.

Results. Figure 5 shows the results. Our coordinated
learning approach substantially outperforms conventional
imitation learning without structured coordination. The
imitation loss measures average distance of roll-outs and
ground truth in meters (note the typical size of soccer field
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Figure 6. Result of 10 coordinated imitation policies, correspond-
ing with Figure 1. White is the rolled-out imitation policies.

is 110 ˆ 70 meters). As expected, average loss increases
with longer sequences, due to cascading errors. However,
this error scales sub-linearly with the length of the hori-
zon, even though the policies were trained on sequences
of length 50. Note also that the performance difference be-
tween decentralized and centralized policies is insignificant
compared to the gap between coordinated and unstructured
policies, further highlighting the benefits of structured co-
ordination in multi-agent settings. The loss of a single net-
work, non-joint training scheme is very large and thus omit-
ted from Figure 5 (see the appendix).

Visualizations. Imitation loss, of course, is not a full
reflection of the quality of the learned policies. Unlike
predator-prey, the long-term reward signal is not available,
so we rely on visual inspection as part of evaluation. Fig-
ure 6 overlays policy prediction on top of the actual game
sequence from Figure 1. Additional test examples are in-
cluded in our supplemental video 5. We note that learned
policies are qualitatively similar to the ground truth demon-
strations, and can be useful for applications such as coun-
terfactual replay analysis (Le et al., 2017). Figure 7 dis-
plays the Gaussian components of the underlying HMM.
The components correspond to the dominant modes of the
roles assigned. Unlike the predator-prey domain, roles can
be switched during a sequence of play. See the appendix
for more details on role swap frequency.

5. Other Related Work
The problem of multi-agent imitation learning has not been
widely considered, perhaps with the exception of (Cher-
nova & Veloso, 2007) which focused on very different ap-
plications and technical challenges (i.e., learning a model
of a joint task by collecting samples from direct interaction
with teleoperating human teachers). The actual learning al-
gorithm there requires the learner to collect enough data
points from human teachers for confident classification of

5Watch video at http://hoangminhle.github.io

Figure 7. Components of role distributions, corresponding to a
popular formation arrangement in professional soccer

task. It is not clear how well the proposed method would
translate to other domains.

Index-free policy learning is generally difficult for black-
box machine learning techniques. Some recent work has
called attention to the importance of order to learning when
input or output are sets (Vinyals et al., 2015), motivated by
classic algorithmic and geometric problems such as learn-
ing to sort a set of numbers, or finding convex hull for a
set of points, where no clear indexing mechanism exists.
Other permutation invariant approaches include those for
standard classification (Shivaswamy & Jebara, 2006).

6. Limitations and Future Work
In principle, the training and inference of the latent struc-
ture model can accommodate different types of graphical
models. However, the exact procedure varies depending
on the graph structure. It would be interesting to find do-
mains that can benefit from more general graphical mod-
els. Another possible direction is to develop fully end-
to-end differentiable training methods that can accommo-
date our index-free policy learning formulation, especially
deep learning-based method that could provide computa-
tional speed-up compared to traditional graphical model in-
ference. One potential issue with the end-to-end approach
is the need to depart from a learning-reductions style ap-
proach.

Although we addressed learning from demonstrations in
this paper, the proposed framework can also be employed
for generative modeling, or more efficient structured explo-
ration for reinforcement learning. Along that line, our pro-
posed method could serve as a useful component of general
reinforcement learning, especially in multi-agent settings
where traditional exploration-based approaches such as Q-
learning prove computationally intractable.
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A. Variational Inference Derivation for
Hidden Markov Models

In this section, we provide the mathematical derivation for
the structured variational inference procedure. We focus
on the training for Bayesian Hidden Markov Model, in par-
ticular the Forward-Backward procedure to complete the
description of Algorithm 3. The mathematical details for
other types of graphical models depend on the family of
such models and should follow similar derivations. Further
relevant details on stochastic variational inference can be
found in (Hoffman et al., 2013; Johnson & Willsky, 2014;
Beal, 2003). d

Settings. Given an arbitrarily ordered set of trajecto-
ries U “ tU1, . . . , UK , Cu, let the coordination mecha-
nism underlying each such U be governed by a true un-
known model p, with global parameters θ. We suppress
the agent/policy subscript and consider a generic featurized
trajectory xt “ rut, cts @t. Let the latent role sequence for
the same agent be z “ z1:T .

At any time t, each agent is acting according to a latent role
zt „ Categoricalt1̄, 2̄, . . . , K̄u, which are the local
parameters to the structured model.

Ideally, role and index asignment can be obtained by cal-
culating the posterior ppz|x, θq, which is often intractable.
One way to infer the role assignment is via approximat-
ing the intractable posterior ppz|x, θq using Bayesian infer-
ence, typically via MCMC or mean-field variational meth-
ods. Since sampling-based MCMC methods are often slow,
we instead aim to learn to approximate ppz|x, θq by a sim-
pler distribution q via Bayesian inference. In particular,
we employ techniques from stochastic variational inference
(Hoffman et al., 2013), which allows for efficient stochastic
training on mini-batches that can naturally integrate with
our imitation learning subroutine.

Structured Variational Inference for Unsupervised Role
Learning. Consider a full probabilistic model:

ppθ, z, xq “ ppθq
T
ź

t“1

ppzt|θqppxt|zt, θq

with global latent variables θ, local latent variables z “
tztu

T
t“1. Posterior approximation is often cast as optimiz-

ing over a simpler model class Q, via searching for global
parameters θ and local latent variables z that maximize the
evidence lower bound (ELBO) L:

log ppxq ě Eq rlog ppz, θ, xqs ´ Eq rlog qpz, θqs

fi L pqpz, θqq .

Maximizing L is equivalent to finding q P Q to minimize
the KL divergence KL pqpz, θ|xq||ppz, θ|xqq.

For unsupervised structured prediction problem over a fam-
ily of graphical model, we focus on the structured mean-
field variational family, which factorizes q as qpz, θq “
qpzqqpθq (Hoffman & Blei, 2014) and decomposes the
ELBO objective:

L “ Eqrlog ppθs ´ Eqrlog qpθs

` Eqrlogpppz, x|θqs ´ Eqrlogpqpzqqs. (3)

This factorization breaks the dependency between θ and z,
but not between single latent states zt, unlike variational
inference for i.i.d data (Kingma & Welling, 2013).

Variational inference optimizes the objective L typically
using natural gradient ascent over global factors qpθq and
local factors qpzq. (Under mean-field assumption, opti-
mization typically proceeds via alternating updates of θ
and z.) Stochastic variational inference performs such up-
dates efficiently in mini-batches. For graphical models,
structured stochastic variational inference optimizes L us-
ing natural gradient ascent over global factors qpθq and
message-passing scheme over local factors qpzq. We as-
sume the prior ppθq and complete conditionals ppzt, xt|θq
are conjugate pairs of exponential family, which gives nat-
ural gradient of L with respect to qpθq convenient forms
(Johnson & Willsky, 2014). Denote the exponential family
forms of ppθq and ppzt, yt|θq by:

ln ppθq “ xηθ, tθpθqy ´Aθpηθq

ln ppzt, xt|θq “ xηzxpθq, tzxpzt, xtqy ´Azxpηzxpθqq

where ηθ and ηzx are functions indicating natural param-
eters, tθ and tzx are sufficient statistics and Ap¨q are log-
normalizers ((Blei et al., 2017)). Note that in general, dif-
ferent subscripts corresponding to η, t, A indicate different
function parameterization (not simply a change in variable
value assignment). Conjugacy in the exponential family
yields that (Blei et al., 2017):

tθpθq “ rηzxpθq,´Azxpηzxpθqqs

and that

ppθ|zt, xtq9 exptxηθ ` rtzxpzt, xtq, 1s , tθpθqyu (4)

Conjugacy in the exponential family also implies that the
optimal qpθq is in the same family (Blei et al., 2017), i.e.

qpθq “ exptxrηθ, tθpθqy ´Aθprηθqu

for some natural parameters rηθ of qpθq.

To optimize over global parameters qpθq, conjugacy in
the exponential family allows obtaining convenient expres-
sion for the gradient of L with respect to natural param-
eters rηθ. The derivation is shown similarly to (Johnson
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& Willsky, 2014) and (Blei et al., 2017) - we use simpli-
fied notations rη fi rηθ, η fi ηθ, A fi Aθ, and tpz, xq fi
řT
t“1 rtzxpzt, xtq, 1s. Taking advantage of the exponential

family identity Eqpθqrtθpθqs “ ∇Aprηq, the objective L can
be re-written as:

L “ Eqpθqqpzq rln ppθ|z, xq ´ ln qpθqs

“ xη ` Eqpzqrtpz, xqs,∇Aprηqy ´ pxrη,∇Aprηqy ´Aprηqq

Differentiating with respect to rη, we have that

∇
rηL “

`

∇2Aprηq
˘ `

η ` Eqpzqrtpz, xqs ´ rη
˘

The natural gradient of L, denoted r∇
rη , is defined as r∇

rη fi
`

∇2Aprηq
˘´1∇

rη . And so the natural gradient of L can be
compactly described as:

r∇
rηL “ η `

T
ÿ

t“1

Eqpztqtrtzxpzt, xtq, 1su ´ rη (5)

Thus a stochastic natural descent update on the global pa-
rameters rηθ proceeds at step n by sampling a mini-batch xt
and taking the global update with step size ρn:

rηθ Ð p1´ ρnqrηθ ` ρnpηθ ` b
JEq˚pztqrtpzt, xtqsq (6)

where b is a vector of scaling factors adjusting for the rel-
ative size of the mini-batches. Here the global update as-
sumes optimal local update q˚pzq has been computed. In
each step however, the local factors q˚pztq are computed
with mean field updates and the current value of qpθq (anal-
ogous to coordinate ascent). In what follows, we provide
the derivation for the update rules for Hidden Markov Mod-
els, which are the particular instantiation of the graphical
model we use to represent the role transition for our multi-
agent settings.

Variational factor updates via message passing for Hid-
den Markov Models. For HMMs, we can view global pa-
rameters θ as the parameters of the underlying HMMs such
as transition matrix and emission probabilities, while local
parameters z govern hidden state assignment at each time
step.

Fixing the global parameters, the local updates are based on
message passing over the graphical model. The exact math-
ematical derivation depends on the specific graph structure.
The simplest scenario is to assume independence among
zt’s, which resembles naive Bayes. We instead focus on
Hidden Markov Models to capture first-order dependen-
cies in role transitions over play sequences. In this case,
global parameters θ “ pp0, P, φq where P “ rPijs

K
i,j“1

is the transition matrix with Pij “ ppzt “ j|zt´1 “ iq,
φ “ tφiu

K
i“1 are the emission parameters, and p0 is the

initial distribution.

Consider a Bayesian HMM on K latent states. Priors on
the model parameters include the initial state distribution
p0, transition matrix P with rows denoted p1, . . . , pK , and
the emission parameters φ “ tφiuKi“1. In this case we have
the global parameters θ “ pp0, P, φq. For Hidden Markov
Model with observation x1:T and latent sequence z1:T , the
generative model over the parameters is given by φi „
ppφq (i.i.d from prior), pi „ Dirpαiq, z1 „ p0, zt`1 „ pzt ,
and xt „ ppxt|φztq (conditional distribution given param-
eters φ). We can also write the transition matrix:

P “

»

—

–

p1

...
pK

fi

ffi

fl

The Bayesian hierarchical model over the parameters, hid-
den state sequence z1:T , and observation sequence y1:T is

φi
iid
„ ppφq, pi „ Dirpαiq

z1 „ p0, zt`1 „ pzt , xt „ ppxt|φztq

For HMMs, we have a full probabilistic model: ppz, x|θq “
p0pz1q

śT
t“1 ppzt|zt´1, P qppxt|zt, φq. Define the likeli-

hood potential Lt,i “ ppxt|φiq, the likelihood of the latent
sequence, given observation and model parameters, is as
follows:

ppz1:T |x1:T , P, φq “

exp

˜

log p0pz1q `

T
ÿ

t“2

logPzt´1,zt `

T
ÿ

t“1

logLt,zt ´ Z

¸

(7)

where Z is the normalizing constant. Following the no-
tation and derivation from (Johnson & Willsky, 2014),
we denote ppz1:T |x1:T ,P,φq “ HMMpp0, P, Lq. Under
mean field assumption, we approximate the true poste-
rior ppP, φ, z1:T |x1:T q with a mean field variational family
qpP qqpφqqpz1:T q and update each variational factor in turn
while fixing the others.

Fixing the global parameters θ, taking expectation of log
of (7), we derive the update rule for qpzq as qpz1:T q “

HMMp rP , rp0, rLq where:

rPj,k “ exptEqpP q lnpPj,kqu

rp0,k “ exptlnEqpp0qp0,ku

rLt,k “ exptEqpφkq lnpppxt|zt “ kqqu

To calculate the expectation with respect to qpz1:T q,
which is necessary for updating other factors, the
Forward-Backward recursion of HMMs is defined by
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forward messages F and backward messages B:

Ft,i “
K
ÿ

j“1

Ft´1,j
rPj,irLt,i (8)

Bt,i “
K
ÿ

j“1

rPi,j rLt`1,jBt`1,j (9)

F1,i “ p0piq

BT,i “ 1

As a summary, calculating the gradient w.r.t z yields the
following optimal variational distribution over the latent se-
quence:

q˚pzq9 exp
´

EqpP qrln p0pz1qs `

T
ÿ

t“2

EqpP qrlogPzt´1,zts

`

T
ÿ

t“1

Eqpφq lnrppxt|ztqs
¯

, (10)

which gives the local updates for q˚pzq, given current esti-
mates of P and φ:

rPj,k “ exp
“

EqpP q lnpPj,kq
‰

(11)

rppxt|zt “ kq “ exp
“

Eqpφq ln ppxt|xt “ kq
‰

, (12)

for k “ 1, . . . ,K, t “ 1, . . . , T , and then use p0, rP , rp
to run the forward-backward algorithm to compute the up-
date q˚pzt “ kq and q˚pzt´1 “ j, zt “ kq. The forward-
backward algorithm in the local update step takesOpK2T q
time for a chain of length T and K hidden states.

Training to learn model parameters for HMMs. Com-
bining natural gradient step with message-passing scheme
for HMMs yield specific update rules for learning the
model parameters. Again for HMMs, the global parameters
are θ “ pp0, P, φq and local variables z “ z1:T . Assuming
the priors on observation parameter ppφiq and likelihoods
ppxt|φiq are conjugate pairs of exponential family distribu-
tion for all i, the conditionals ppφi|xq have the form as seen
from equation 4:

ppφi|xq9 exptxηφi ` rtx,ipxq, 1s, tφipφiqyu

For structured mean field inference, the approximation qpθq
factorizes as qpP qqpp0qqpφq. At each iteration, stochastic
variational inference sample a sequence x1:T from the data
set (e.g. trajectory from any randomly sampled player) and
perform stochastic gradient step on qpP qqpp0qqpφq. In or-
der to compute the gradient, we need to calculate expected
sufficient statistics w.r.t the optimal factor for qpz1:T q,
which in turns depends on current value of qpP qqpp0qqpφq.

Following the notation from (Johnson & Willsky, 2014),
we write the prior and mean field factors as

pppiq “ Dirpαiq, ppφiq9 exptxηφi , tφipφiqyu

qppiq “ Dirprαiq, qpφiq9 exptxrηφi , tφipφiqyu

Algorithm 5 Coordinated Structure Learning
LearnStructure tU1, . . . , UK , C, θ, ρu ÞÑ qpθ, zq

Input: Set of trajectories U “ tUkuKk“1. Context C
Previous parameters θ “ pp0, θP , θφq, stepsize ρ

1: Xk “ txt,kuTt“1 “ trut,k, ctsu @t, k.X “ tXku
K
k“1

2: Local update: Compute rP and rp per equation 11 and 12
and compute qpzq “ Forward-BackwardpX, rP , rpq

3: Global update of θ, per equations 16, 17, and 18.
output Updated model qpθ, zq “ qpθqqpzq

Using message passing scheme as per equations (8) and (9),
we define the intermediate quantities:

ptx,i fi Eqpz1:T q
T
ÿ

t“1

Irzt “ istx,ipxtq

“

T
ÿ

t“1

Ft,iBt,irtx,ipxtq, 1s{Z (13)

ppttrans,iqj fi Eqpz1:T q
T´1
ÿ

t“1

Irzt “ i, zt`1 “ js

“

T´1
ÿ

t“1

Ft,i rPi,j rLt`1,jBt`1,j{Z (14)

pptinitqi fi Eqpz1:T qIrz1 “ is “ rp0B1,i{Z (15)

where Z fi
řK
i“1 FT,i is the normalizing constant, and I is

the indicator function.

Given these expected sufficient statistics, the specific up-
date rules corresponding to the natural gradient step in the
natural parameters of qpP q, qpp0q, and qpφq become:

rηφ,i Ð p1´ ρqrηφ,i ` ρpηφ,i ` b
J
ptx,iq (16)

rαi Ð p1´ ρqrαi ` ρpαi ` b
J
pttrans,iq (17)

rα0 Ð p1´ ρqrα0 ` ρpα0 ` b
J
ptinit,iq (18)

B. Experimental Evaluation
B.1. Batch-Version of Algorithm 2 for Predator-Prey

B.2. Visualizing Role Assignment for Soccer

The Gaussian components of latent structure in figure 7
give interesting insight about the latent structure of the
demonstration data, which correspond to a popular for-
mation arrangement in professional soccer. Unlike the
predator-prey domain, however, the players are sometimes
expected to switch and swap roles. Figure 8 displays the
tendency that each learning policy k would takes on other
roles outside of its dominant mode. Policies indexed 0´ 3
tend to stay most consistent with the prescribed latent roles.
We observe that these also correspond to players with the
least variance in their action trajectories. Imitation loss is
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Algorithm 6 Multi-Agent Data Aggregation Imitation
Learning
LearnpA1, A2, . . . , AK , C|Dq

Input: Ordered actions Ak “ tat,ku
T
t“1 @k, context

tctu
T
t“1

Input: Aggregating data set D1, .., DK for each policy
Input: base routine TrainpS,Aq mapping state to ac-

tions
1: for t “ 0, 1, 2, . . . , T do
2: Roll-out ât`1,k “ πkpŝt,kq @ agent k
3: Cross-update for each policy k P t1, . . . ,Ku

ŝt`1,k “ ϕk prât`1,1, . . . , ât`1,k, . . . , ât`1,K , ct`1sq

4: Collect expert action a˚t`1,k given state ŝt`1,k @k

5: Aggregate data set Dk “ Dk Ytŝt`1,k, a
˚
t`1,ku

T´1
t“0

6: end for
7: πk Ð TrainpDkq

output K new policies π1, π2, . . . , πK

Figure 8. Role frequency assigned to policy, according to the max-
imum likelihood estimate of the latent structured model

generally higher for less consistent roles (e.g. policies in-
dexed 8´9). Intuitively, entropy regularization encourages
a decomposition of roles that result in learning policies as
decoupled as possible, in order to minimize the imitation
loss.


