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Machine learning for decision making

(ALVINN - Dean Pomerleau et al., 1989-1999)
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Policy Learning

(Agent)

action state / context
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Environment
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Policy m: X — A

Value function: Optimization objective to derive “optimal” policy

Model: Unknown Dynamics



Reinforcement learning (RL)

Exploration-based methods to minimize long term cost



Reinforcement learning (RL)

Exploration-based methods to minimize long term cost

Starting out - 10 minutes of training

The algorithm tries to hit the ball back, but
itis yet too clumsy to manage.

Policy: x = screen — a = move
Value: total single-stage cost C(x) = [E [Z c(x, a)]

Model: game engine (unknown)



Reinforcement learning

Success stories:

Levine et al., IJRR 2017
Cautionary tales:

_ Inefficient exploration
Imperfect cost and observations .
brittle performance




Imitation learning (IL)

Expert-based methods to minimize long-term imitation loss
(Behavioral cloning, interactive imitation learning, inverse RL...)

DAVE 2 Driving a Lincoln

A convolutional neural network

- Trained by human drivers

- Learns perception, path planning, and control
"pixel in, action out”

- Front-facing camera is the only sensor

Policy: x = camera images — a = steering angle
Value: imitation loss w.r.t. expert C(x) = [E[HJZ'(X) — Jz*(x)ll]

Model: traffic environment (unknown)



Imitation learning tutorial - ICML 2018

https:/ /sites.google.com /view/icml2018-imitation-learning/



Imitation learning

Success stories:

Duan et al., NeurlPS 2017

Cautionary tales:

Expensive expert data Sub-optimal expert
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Needed to close the gap:

current data efficiency v learning for

RL & 1L realistic constraints real-world
methods INEINE
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Policy Learning

current - learning for

RL&IL = K/A real-world
methods + policy learning domains
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Why value-based

Usual RL objective: find 7

min C(x) = E [Z c(state, action)]

T

scalar cost objective

Reality: hard to define a single cost function

Multi-criteria value-based constraints

min travel time

T

s.t. lane centering
smooth driving

Q007

Online RL: changed cost objective == need to solve a fresh problem



off-policy with value-based constraints

TD generates historical (sub-optimal) data

= Learn better policy from data under multiple

value-based constraints?

Batch Policy Learning under Constraints
- LeVoloshinYue - ICML 2019



Given: n tuples data set D = {(state, action, next state,c, g) } ~ mp

Goal: find

m valued-based constraints

G(r) = [Zg(state, action)] g = [gl 9 ... gm]T

Example:
Counterfactual & Safe policy learning g(x) =1 [x = xawid]



Lagrangian L(m, 1) = C(x) + A'G(%)

(P) minmax L(x, 4)
n  A>0

(D) maxminL(x, /)
A>0 &«

Policy class convexification: Allow randomized policies to handle non-convex
costs

Proposed Approach: Solving a repeated game between 7 and A




Lagrangian L(r,2) = C(z) + 1'G(n)

(P) minmax L(x, 4)
n  A>0

(D) maxminL(x, /)
A>0 &

Algorithm (rough sketch)

lteratively:

. T
1: 7 < Best-response(4) batch RL w.rt. c+4'g




Lagrangian L(m, 1) = C(x) + A'G(%)

(P) minmax L(x, 4)
n A1>0

(D) maxminL(x, /)
A>0 7«

Algorithm (rough sketch)

lteratively:
1: = <« Best-response(l)
2: L, .= evaluate (D) fixing =
3. L, = evaluate (P) fixing 4
a.tL, .—L. <®:
5: stop
6: new 1 « Online-algorithnm(all previous x)

. | .
Regret = 0(\/7) —>  convergence in 0(—2) lterations
6))




Off-policy evaluation

Given D = {(state, action, next state,c) } ~ z, estimate C (n) ~ C(n)

Fitted Q Evaluation (simplified)

For K iterations:
Solve for Q : (state, action) = y = ¢ + Q,,,,(next state, z(next state))

Return value of Qg

Guarantee for FQE

Forn = poly(Z, log 3, log K, log m, dimg), with probability 1 — &:

C(m) — C(n )| < O(+/Be)

éﬁ

distribution shift coefficient of MDP



End-to-end Performance Guarantee

Forn = poly(+, log 3, log K, log m, dimg ), with probability 1 — o:
C(returned policy) — C(optimal) < O(w + 1/ 3¢)

and
constraint violation < O(w + +/3¢)

+

stopping condition



minimize travel time

[ Member of Tiles Cc ected: 0ne?
Numbor of Braking Actine=: 0DQ0
Mean Devistian fram Center: 0.000000

u **’\:]
Q{/N

D

Results:

- both constraints satisfied

returned policy

- travel time still matches online RL optimal



Learning with value-based constraints

= Value-based constraint specification: Flexible to encode
domain knowledge

= Data efficiency from off-line policy learning and
counterfactual cost function modification

= Extensive benchmarking of OPE: FQE among the best
methods

m  Empirical Study of Off-policy Policy Evaluation for Reinforcement Learning
- VoloshinLeJiangYue - (submitted)
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Why policy-based

» Encoding structure into policy class can be more natural

= Benefit: policy-based guarantee

= Example 1: symbolic verification of programs (& interpretable)

“if the car is aligned with
the axis of the track...”

if (0bSTrackpos(0) < 0.001 and obstrackpos(0) > —0.001)
then PID.y(0.44,4.92,0.89, 49.79)
else PID,,,(0.40,4.92,0.89,49.79) “then accelerate,

otherwise slow down”



Why policy-based

» Encoding structure into policy class can be more natural
= Benefit: policy-based guarantee

= Example 2: smoothness guarantee

my(x) 1S smooth, e.g., Ly < 1



Integrate policy structure

= Neural policy class F : deep RL, IL
= flexible, but unstable and does not satisfy desired property

= Programmatic policy class I1
» |ess flexible, but certifiable

Aside:
regularization in supervised learning

mein L(O) + AR(O)

prior knowledge on 6



Integrate policy structure

= Neural policy class F : deep RL, IL
= flexible, but unstable and does not satisfy desired property

= Programmatic policy class I1
» |ess flexible, but certifiable

= Hybrid representation (policy class regularization)
H=II®F
h=n+Af defined as h(x) = z(x) + Af(x)



Programmatic reinforcement learning

= The program space 11

- language (arithmetic, boolean, relational) over simple policies

= Goal: find the best program

7* = argmin . C(x)

= | earning programmatic policies (program synthesis): highly structured
nature of policy space

= Approach:

Building program structure into policy search via “lift-and-project”

Imitation-Projected Policy Gradient for Programmatic Reinforcement Learning
- LeVermaYueChaudhuri - NeurlPS 2019



Imitation-projected policy gradient

hybrid class: H=I1®F

each iteration: h, < UPDATER(x,_,)

UPDATE: f—f—nAVeC(r + Af)
h— n+Af

PROJECT: imitation learning
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Approximate Mirror Descent

hybrid class: H=I1®F

each iteration: h, « UPDATEF(JZ'I_I) ~ UPDATEH(@_I)

7, «— PROJECT(h) ~ argmin__q||7 — h,||

UPDATE: f—f—nAVeC(z+ Af) %
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Experiment

Generalization: IPPG completed 12/20 unseen tracks, DDPG completed 3/20

G-TRACK E-ROAD AALBORG RUUDSKOGEN ALPINE-2

G-TRACK . 119|/ Cr CRr}|/ Cr CRr / CRr CR|/ CRrR
E-ROAD 103|/ 88 - CRrR|/ CR CR//CR CrRY CRr
AALBORG 199/ 86 221) 102 212|/ CRr 214|/ CRr

RUUDSKOGEN 124)/ CRrR 127/ CR CRrR|/ CR 5 CrRY CRr
ALPINE-2 210 CRr 226|/ CRr 176/ CR 227/ CRrR -




"Programmatic’ imitation learning

= The program space Il is regularized neural space:

T=Apy+ (1 —-41)g,

/ N

neural net policy linear policy

» Goal: find the best smooth policy
7* = argmin . C(7)

» Friendly case: IIC &

- IL for both UPDATE and PROJECT
- can choose learning rate independent on

horizon to guarantee improvement neural policies F

guaranteed smooth policies 11

Smooth Imitation Learning for Online Sequence Prediction
- LeKangYueCarr - ICML 2016



Learning progress

w w =

episode 1 episode 3

episode 5 episode 10

— Expert actions — Agent actions



vs. standard IL

— Expert Action
— Agent Action - Imitation Learning w/o Policy Constraint
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Application: automated camera

Post-hoc Smoothing SIMILE

Learning Online Smooth Predictors for Real-time Camera Planning
- ChenLeCarrYuelittle - CVPR 2016 (Oral Presentation)



Application: off-line video editing

Raw footage Footage edited by policy
(with Cendon and Yue @ Caltech)
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Why model-based

= Some knowledge about the environment can speed-up learning
) ( )

g hierarchical structure ) . approximate model )

s

Aclual Game Sequence

latent structure
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Aclual Game Sequence

latent structure




Given domain hierarchical structure...

How can we improve data efficiency for imitation and
reinforcement learning?

Hierarchical Imitation and Reinforcement Learning
- LeJiangAgarwalDudikYueDaumé - ICML 2018



Hierarchical decision making

meta-controller »» St »» state . S »

controller




Alternative feedback mechanism more natural for domain experts?

RN

High-level feedback Verify / “Lazy”’ Evaluation

Navigation instruction: Macro-action
Stair —> Get Key
—> Stair —> Open Door

completed?



Hierarchical imitation learning
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Hierarchical imitation and
reinforcement learning

= |L for meta-controller (macro-actions)
= RL/IL for low-level policies

400 hg-DAgger/Q versus h-DQN (100 trials)
—— hg-DAgger/Q meglian

h-DQN

ll'» i'

l

1

0.0M 05M 1.0M 15M 2.0M 25M 3.0M 3.5M 4.0M
LO-level reinforcement learning samples

= More data-efficient than flat imitation learning
= Much faster learning than standard reinforcement learning



hierarchical structure
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latent structure




Approximate model

= Model-based RL: estimate model from data

= Robotics & Control: model from physics

@6)

)

= Reinforcement Learning + Control: how to integrate model-based control
and learning-based methods ?



Learning + model-based control

Lyapunov function + safe exploration

T

_ Learning Residual
Approximate Model

Dynamics

\ /

Improved controller

Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems
- Taylor*Dorobantu*LeYueAmes - IROS 2019

A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability
- Taylor*Dorobantu*KrisnamoothylLeYueAmes - CDC 2019



Learning + model-based control

Episodic Learning

Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems

- Taylor*Dorobantu*LeYueAmes -



hierarchical structure
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| atent structure model

| atent Role

Actual Game Sequence



Policy learning w/o latent structure

ARSEN QUEEN

English Premier League Match date: 04/05/2013
2012-2013



Policy + latent model learning

Multi- AgTtaile Maltiple®dlicies

ImitatioAn/Lea(n@ \ = Policy learning: reduction to

Action1  Action K Latent Role single-agent imitation learning

AL AL
KA KRR OO O = atent structure: unsupervised

Policy 1 Policy K Observations

(stochastic) variational inference

GraphieakiMadetbearning

Coordinated Multi-agent Imitation Learning
- LeYueCarrLucey - ICML 2017



Result on behavior modeling

ARSEN QUEEN

Combining latent structure
with policy learning leads to
better performance and
data-efficiency

English Premier League Match date: 04/05/2013
2012-2013

Data-Driven Ghosting using Deep Imitation Learning
- LeCarrYuelucey - SSAC 2017 (Best Paper Award - runner up)

Data-Driven Ghosting
- CarrLeYue - US Patent App #15830710



Needed to close the gap:

current data efficiency v learning for

RL & 1L realistic constraints real-world
methods INEINE
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Policy Learning

current - learning for

RL&IL = K/A real-world
methods + policy learning domains




value > policy [ model&‘ 'learning for

current

REGIE /\)based based | based .
methods domains

_ real-world

/ Value-based: impose constraints on overall performance

/ Policy-based: building structural constraints into policy class

J Model-based: exploiting partial knowledge of the model



current | - . learning for

RL&IL M f real-world
methods domains

/ Generalization, unifying perspectives

/ Realistic benchmarks

J Interfacing with other research areas
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