# Structured Policy Learning: Towards Real-World Sequential Decision Making

Hoang M. Le

California Institute of Technology

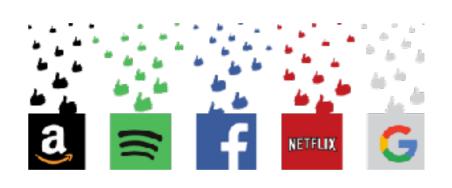
Thesis Committee: Anima Anandkumar (Caltech & NVIDIA)

Hal Daumé III (Microsoft & UMD)

Adam Wierman (Chair, Caltech)

Yisong Yue (PhD advisor, Caltech)

# Sequential decision making systems













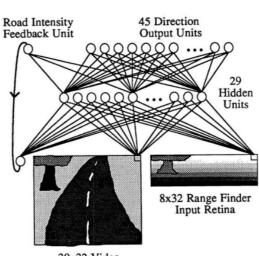






## Machine learning for decision making

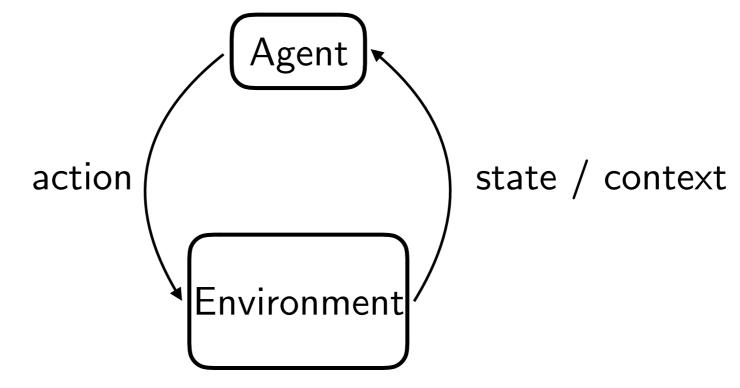


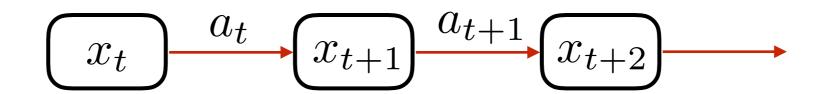


Input Retina

(ALVINN - Dean Pomerleau et al., 1989-1999)

# Policy Learning





Policy  $\pi: X \mapsto A$ 

Value function: Optimization objective to derive "optimal" policy

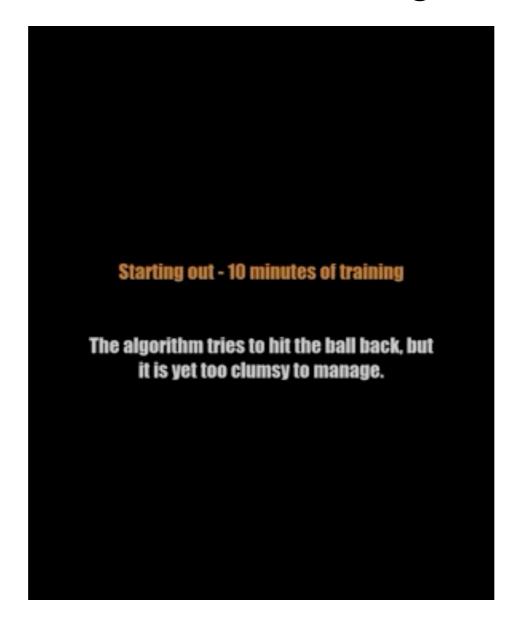
Model: Unknown Dynamics

## Reinforcement learning (RL)

Exploration-based methods to minimize long term cost

# Reinforcement learning (RL)

Exploration-based methods to minimize long term cost



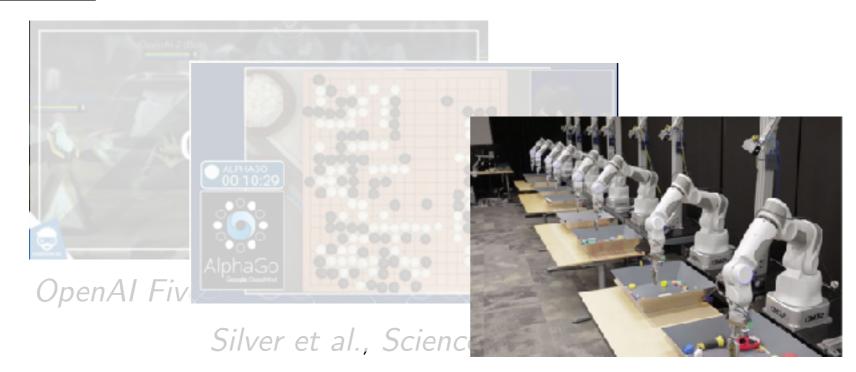
Policy:  $x = \text{screen} \mapsto a = \text{move}$ 

Value: total single-stage cost  $C(\pi) = \mathbb{E} \left[ \sum_{i=1}^{n} c(x_i, a_i) \right]$ 

Model: game engine (unknown)

## Reinforcement learning

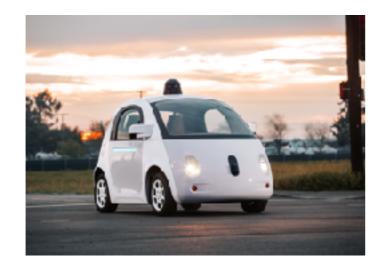
#### **Success stories:**



Levine et al., IJRR 2017

#### **Cautionary tales:**

Imperfect cost and observations

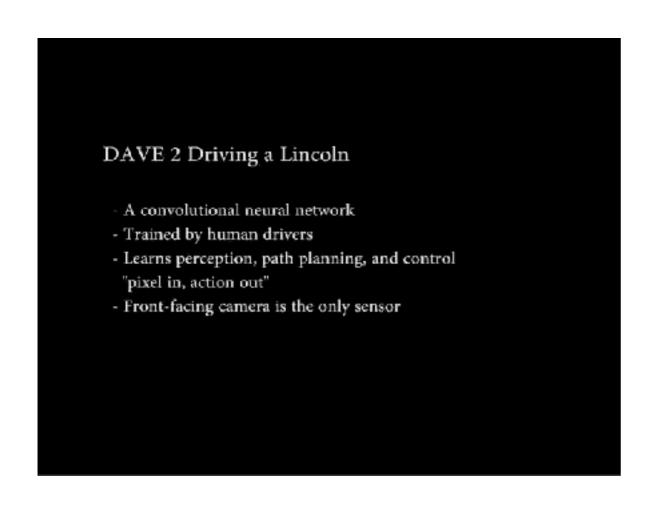


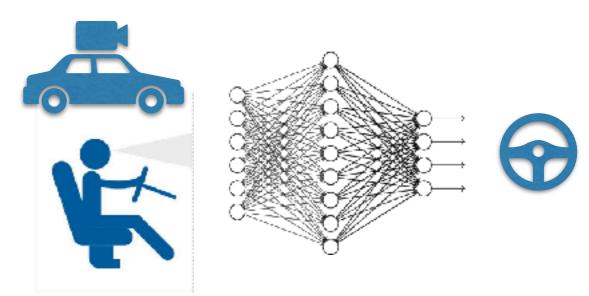
Inefficient exploration brittle performance



# Imitation learning (IL)

Expert-based methods to minimize long-term imitation loss (Behavioral cloning, interactive imitation learning, inverse RL...)





Policy:  $x = \text{camera images} \rightarrow a = \text{steering angle}$ 

Value: imitation loss w.r.t. expert  $C(\pi) = \mathbb{E}[||\pi(x) - \pi^*(x)||]$ 

Model: traffic environment (unknown)

### Imitation learning tutorial - ICML 2018



Yisong Yue

Hoang M. Le





https://sites.google.com/view/icml2018-imitation-learning/

## Imitation learning

#### **Success stories:**



Duan et al., NeurIPS 2017

#### **Cautionary tales:**

Expensive expert data



Sub-optimal expert



current
RL & IL
methods

#### Needed to close the gap:

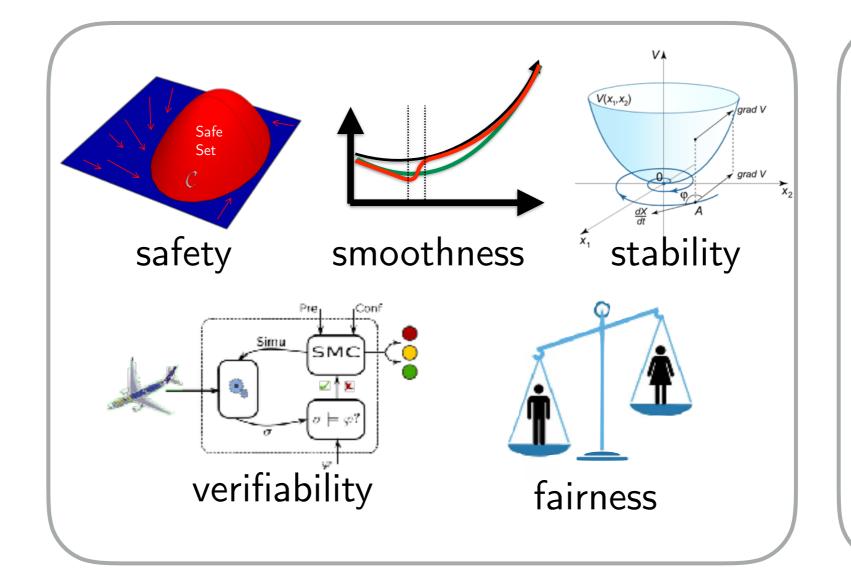
data efficiency realistic constraints

learning for real-world domains













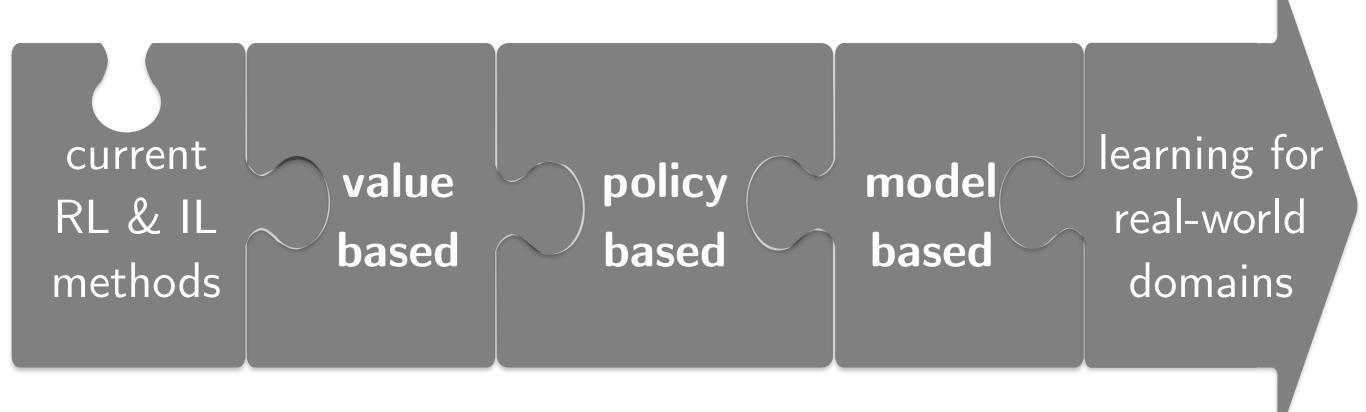


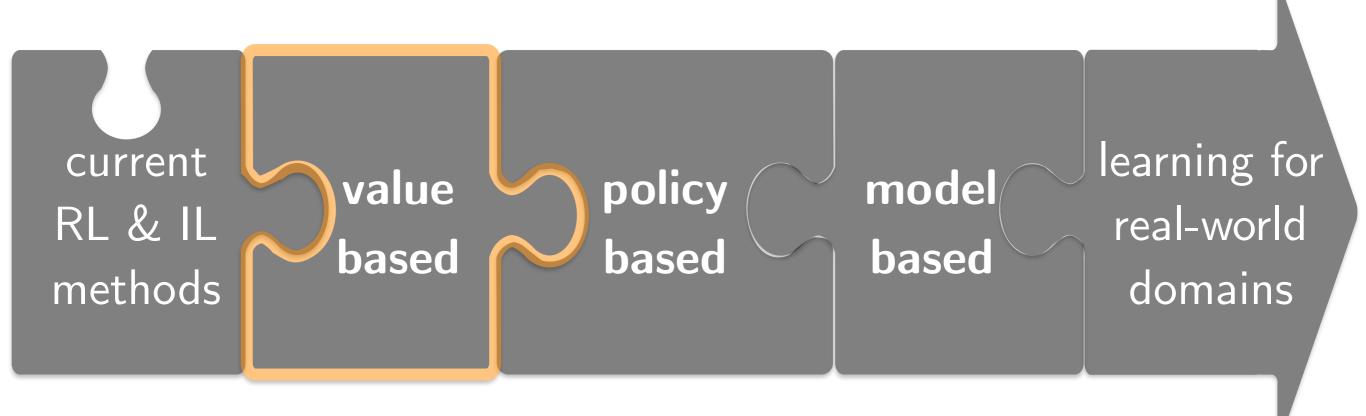
current RL & IL methods

Structured Policy Learning
=

domain knowledge + policy learning

learning for real-world domains





## Why value-based

**Usual RL objective**: find  $\pi$ 

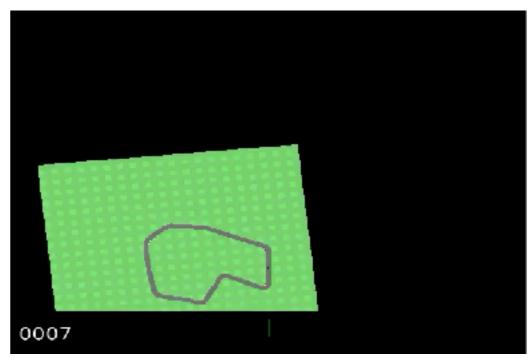
$$\min_{\pi} \quad C(\pi) = \mathbb{E}\left[\sum c(\text{state, action})\right]$$

Reality: hard to define a single cost function

Multi-criteria value-based constraints

min travel time

s.t. lane centering smooth driving



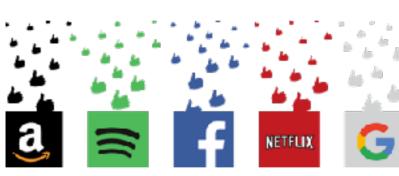
scalar cost objective

Online RL: changed cost objective  $\implies$  need to solve a fresh problem

## off-policy with value-based constraints







 $\pi_{\mathrm{D}}$  generates historical (sub-optimal) data

Learn better policy from data under multiple value-based constraints? **Given**: n tuples data set  $D = \{ (state, action, next state, c, g) \} \sim \pi_D$ 

**Goal**: find  $\pi$ 

$$\min_{\pi} C(\pi)$$
s.t.  $G(\pi) \leq \tau$ 

m valued-based constraints

$$G(\pi) = \mathbb{E}\left[\sum g(\text{state, action})\right] \quad g = \begin{bmatrix} g_1 & g_2 & \dots & g_m \end{bmatrix}^\mathsf{T}$$

#### **Example:**

Counterfactual & Safe policy learning g(x) = 1 [ $x = x_{avoid}$ ]

Lagrangian

$$L(\pi, \lambda) = C(\pi) + \lambda^{\mathsf{T}} G(\pi)$$

- $(P) \quad \min_{\pi} \max_{\lambda \geq 0} L(\pi, \lambda)$
- (D)  $\max_{\lambda \geq 0} \min_{\pi} L(\pi, \lambda)$

Policy class convexification: Allow *randomized policies* to handle non-convex costs

**Proposed Approach:** Solving a repeated game between  $\pi$  and  $\lambda$ 

$$L(\pi, \lambda) = C(\pi) + \lambda^{\top} G(\pi)$$

$$(P) \quad \min_{\pi} \max_{\lambda \geq 0} L(\pi, \lambda)$$

(D) 
$$\max_{\lambda \geq 0} \min_{\pi} L(\pi, \lambda)$$

#### Algorithm (rough sketch)

Iteratively:

1:  $\pi \leftarrow \text{Best-response}(\lambda)$ 

→ batch RL w.r.t.  $c + \lambda^{\mathsf{T}} g$ 

$$L(\pi, \lambda) = C(\pi) + \lambda^{\top} G(\pi)$$

$$(P) \quad \min_{\pi} \max_{\lambda \geq 0} L(\pi, \lambda)$$

(D) 
$$\max_{\lambda>0} \min_{\pi} L(\pi,\lambda)$$

#### Algorithm (rough sketch)

#### Iteratively:

- 1:  $\pi \leftarrow \text{Best-response}(\lambda)$
- 2:  $L_{max}$  = evaluate (D) fixing  $\pi$
- 3:  $L_{min}$  = evaluate (P) fixing  $\lambda$
- 4: if  $L_{max} L_{min} \leq \omega$ :
- 5: stop
- 6: new  $\lambda \leftarrow$  Online-algorithm(all previous  $\pi$ )

# Off-policy evaluation

Given D =  $\left\{ \left( \text{state, action, next state}, c \right) \right\} \sim \pi_{D}$  estimate  $\widehat{C}(\pi) \approx C(\pi)$ 

#### Fitted Q Evaluation (simplified)

For *K* iterations:

Solve for Q: (state, action)  $\mapsto y = c + Q_{prev}(\text{next state}, \pi(\text{next state}))$ 

Return value of  $Q_K$ 

#### **Guarantee for FQE**

For  $n = poly(\frac{1}{\epsilon}, \log \frac{1}{\delta}, \log K, \log m, \dim_F)$ , with probability  $1 - \delta$ :

$$|C(\pi) - \widehat{C}(\pi)| \leq O(\sqrt{\beta}\epsilon)$$

distribution shift coefficient of MDP

#### End-to-end Performance Guarantee

For  $n = poly(\frac{1}{\epsilon}, \log \frac{1}{\delta}, \log K, \log m, \dim_F)$ , with probability  $1 - \delta$ :

$$C(\text{returned policy}) - C(\text{optimal}) \leq O(\omega + \sqrt{\beta}\epsilon)$$

and

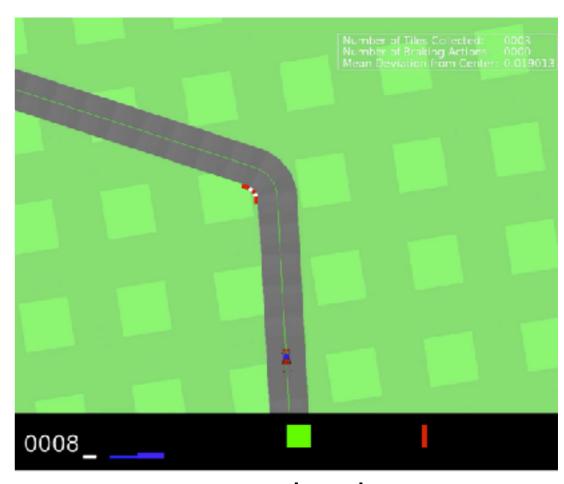
constraint violation 
$$\leq O(\omega + \sqrt{\beta}\epsilon)$$

stopping condition

#### minimize travel time







returned policy

#### **Results:**

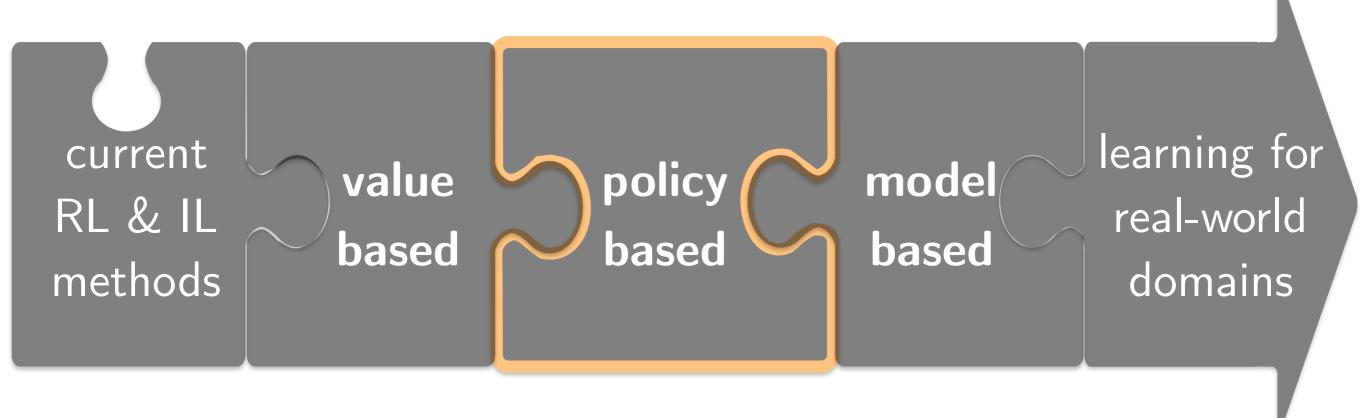
- both constraints satisfied
- travel time still matches online RL optimal

## Learning with value-based constraints

 Value-based constraint specification: Flexible to encode domain knowledge

 Data efficiency from off-line policy learning and counterfactual cost function modification

- Extensive benchmarking of OPE: FQE among the best methods
  - Empirical Study of Off-policy Policy Evaluation for Reinforcement Learning
    - Voloshin**Le**JiangYue (submitted)



## Why policy-based

- Encoding structure into policy class can be more natural
- Benefit: policy-based guarantee
- Example 1: symbolic verification of *programs* (& interpretable)



"if the car is aligned with the axis of the track..."

 $\begin{array}{l} \textbf{if } (\mathbf{obs_{TrackPos}}(0) < 0.001 \ \textbf{and } \mathbf{obs_{TrackPos}}(0) > -0.001) \\ \textbf{then } PID_{\mathtt{rpm}}(0.44, 4.92, 0.89, 49.79) \\ \textbf{else } PID_{\mathtt{rpm}}(0.40, 4.92, 0.89, 49.79) \end{array}$  "then a

"then accelerate, otherwise slow down"

## Why policy-based

- Encoding structure into policy class can be more natural
- Benefit: policy-based guarantee
- Example 2: smoothness guarantee



 $\pi_{\theta}(x)$  is smooth, e.g.,  $L_{\Pi} < 1$ 

## Integrate policy structure

- Neural policy class F: deep RL, IL
  - flexible, but unstable and does not satisfy desired property
- Programmatic policy class ∏
  - less flexible, but certifiable

#### Aside:

regularization in supervised learning

$$\min_{\theta} L(\theta) + \lambda R(\theta)$$
prior knowledge on  $\theta$ 

## Integrate policy structure

- Neural policy class F: deep RL, IL
  - flexible, but unstable and does not satisfy desired property
- Programmatic policy class ∏
  - less flexible, but certifiable

Hybrid representation (policy class regularization)

$$H \equiv \Pi \oplus F$$
 
$$h \equiv \pi + \lambda f \text{ defined as } h(x) = \pi(x) + \lambda f(x)$$

## Programmatic reinforcement learning

- lacktriangle The program space  $\Pi$ 
  - language (arithmetic, boolean, relational) over simple policies
- Goal: find the best program

$$\pi^* = \operatorname{argmin}_{\pi \in \Pi} C(\pi)$$

 Learning programmatic policies (program synthesis): highly structured nature of policy space

#### Approach:

Building program structure into policy search via "lift-and-project"

Imitation-Projected Policy Gradient for Programmatic Reinforcement Learning

- LeVermaYueChaudhuri - NeurIPS 2019

## Imitation-projected policy gradient

hybrid class:  $H \equiv \Pi \oplus F$ 

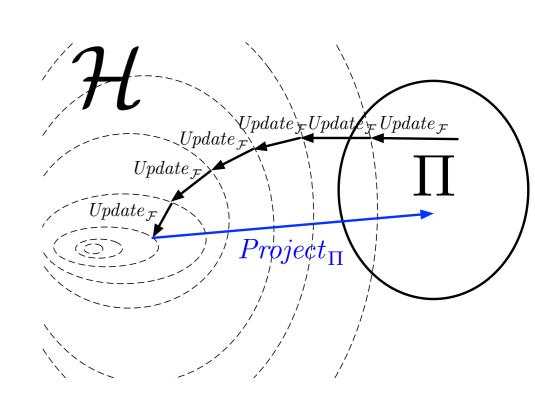
each iteration:  $h_t \leftarrow \mathsf{UPDATE}_F(\pi_{t-1})$ 

 $\pi_t \leftarrow \mathsf{PROJECT}_\Pi(h_t)$ 

UPDATE:  $f \leftarrow f - \eta \lambda \nabla_{F} C(\pi + \lambda f)$ 

 $h \leftarrow \pi + \lambda f$ 

PROJECT: imitation learning



## Approximate Mirror Descent

hybrid class:  $H \equiv \Pi \oplus F$ 

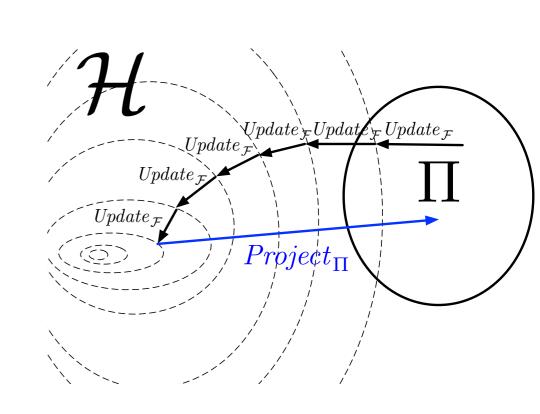
each iteration:  $h_t \leftarrow \mathsf{UPDATE}_F(\pi_{t-1}) \approx \mathsf{UPDATE}_H(\pi_{t-1})$ 

 $\pi_t \leftarrow \mathsf{PROJECT}_\Pi(h_t) \approx \mathrm{argmin}_{\pi \in \Pi} ||\pi - h_t||^2$ 

UPDATE:  $f \leftarrow f - \eta \lambda \nabla_F C(\pi + \lambda f)$ 

$$h \leftarrow \pi + \lambda f$$

UPDATE<sub>H</sub> $(\pi_{t-1}) = \pi_{t-1} - \nabla_{H}C(\pi_{t-1})$ 



# Experiment



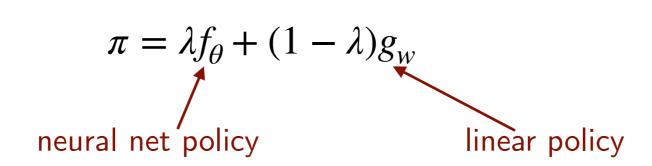
## Experiment

Generalization: IPPG completed 12/20 unseen tracks, DDPG completed 3/20

|            | G-Track  | E-ROAD    | AALBORG | RUUDSKOGEN | ALPINE-2 |
|------------|----------|-----------|---------|------------|----------|
| G-TRACK    |          | 119 / CR  | Cr / Cr | Cr / Cr    | Cr / Cr  |
| E-ROAD     | 103 / 88 | -         | CR / CR | Cr / Cr    | Cr / Cr  |
| AALBORG    | 199 / 86 | 221 / 102 | -       | 212 / CR   | 214 / CR |
| RUUDSKOGEN | 124 / Cr | 127 / CR  | Cr / Cr |            | Cr / Cr  |
| ALPINE-2   | 210 / CR | 226 / CR  | 176/ Cr | 227 / CR   | -        |
|            |          |           |         |            |          |

## "Programmatic" imitation learning

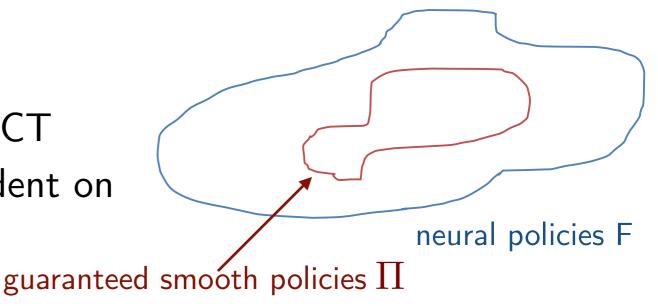
■ The program space  $\Pi$  is regularized neural space:



■ Goal: find the best smooth policy

$$\pi^* = \operatorname{argmin}_{\pi \in \Pi} C(\pi)$$

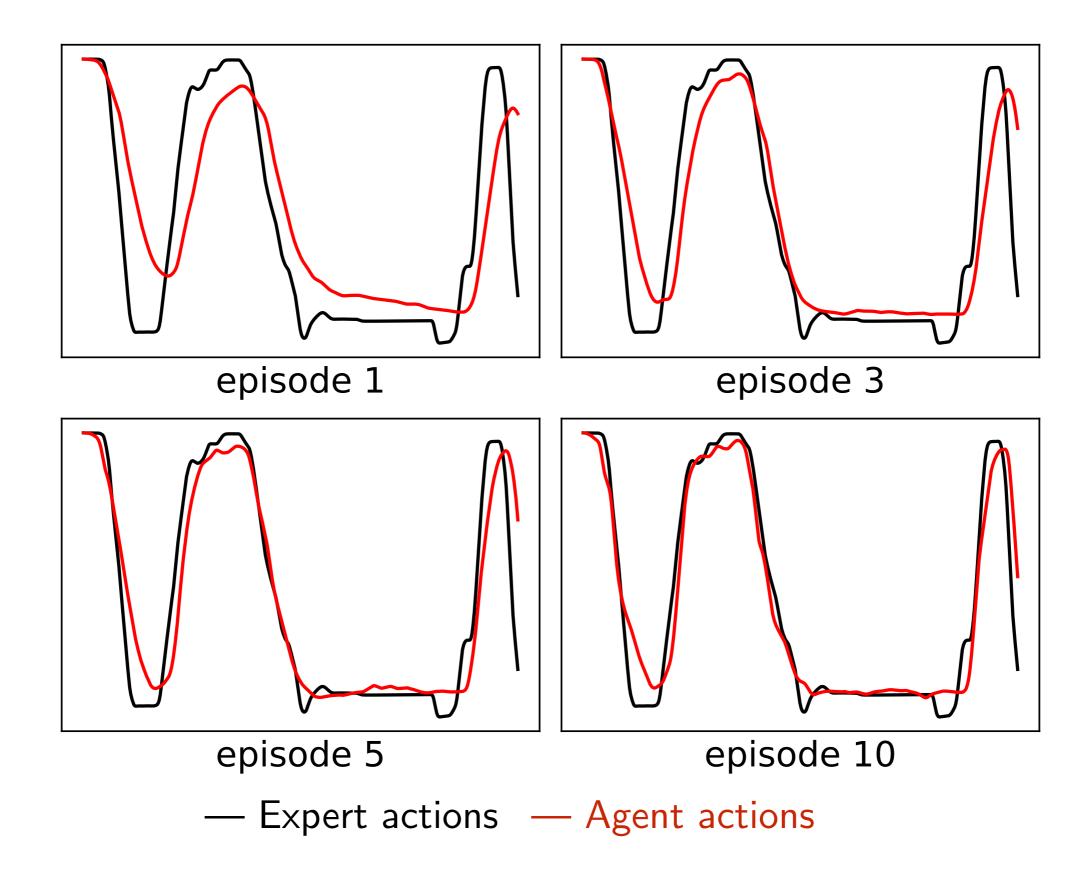
- Friendly case:  $\Pi \subset \mathcal{F}$ 
  - IL for both UPDATE and PROJECT
  - can choose learning rate independent on horizon to guarantee improvement



Smooth Imitation Learning for Online Sequence Prediction

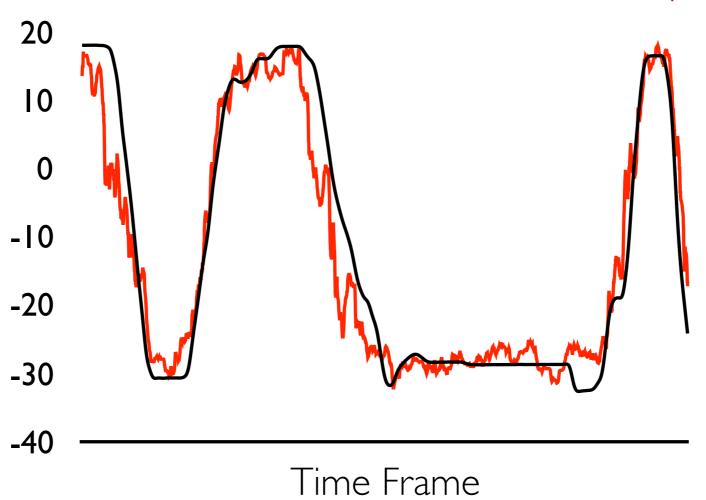
- LeKangYueCarr - ICML 2016

## Learning progress



#### vs. standard IL

- —Expert Action
- —Agent Action Imitation Learning w/o Policy Constraint



#### Application: automated camera





Post-hoc Smoothing

**SIMILE** 

Learning Online Smooth Predictors for Real-time Camera Planning

- ChenLeCarrYueLittle - CVPR 2016 (Oral Presentation)

# Application: off-line video editing

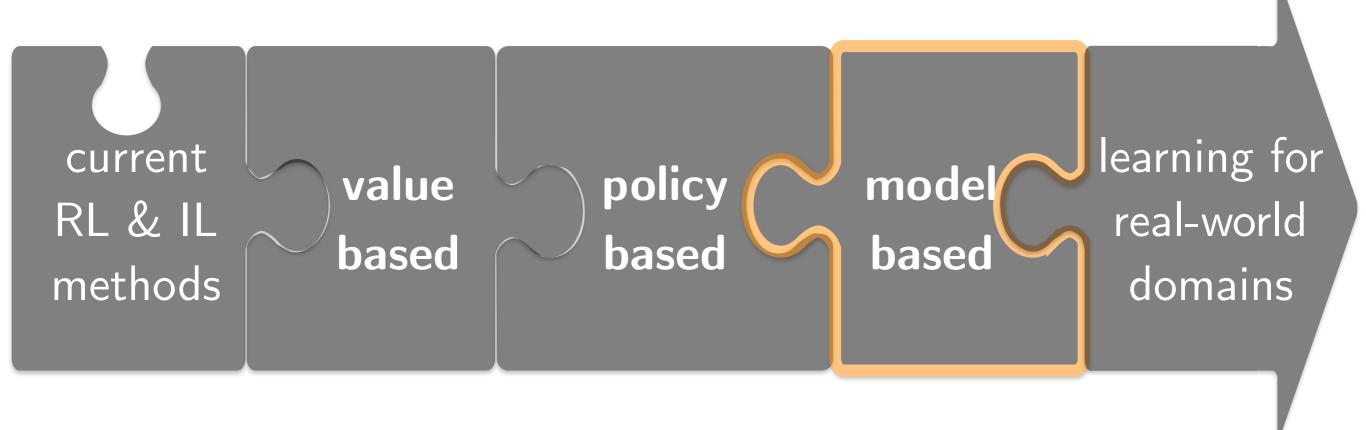


Raw footage



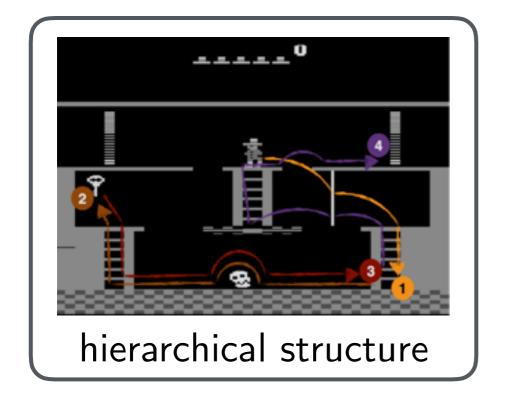
Footage edited by policy

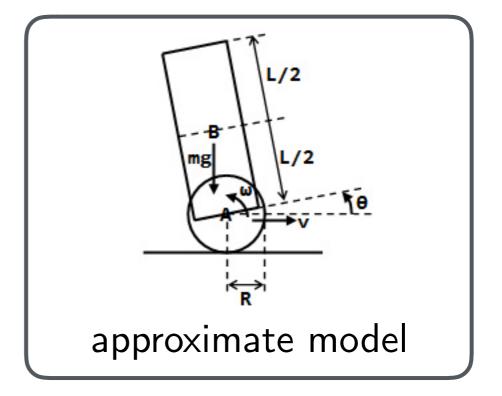
(with Cendon and Yue @ Caltech)

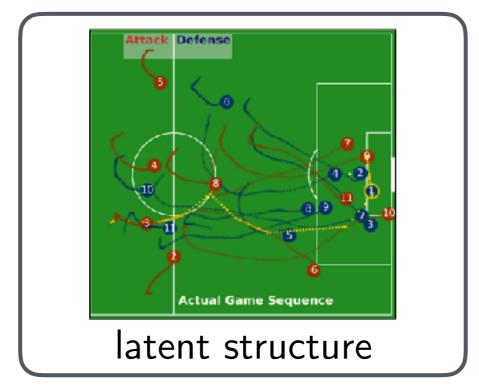


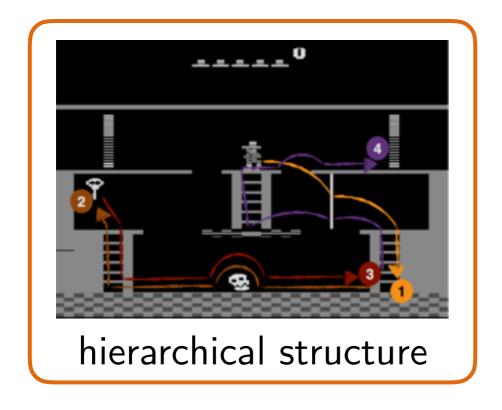
### Why model-based

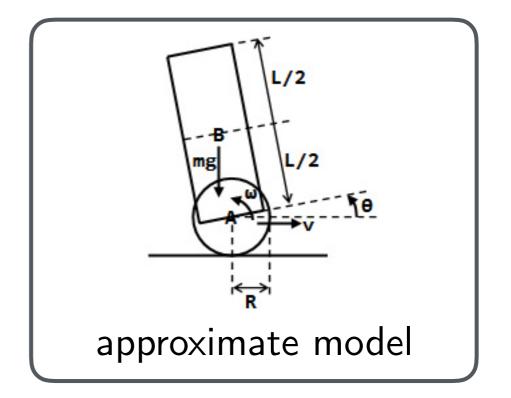
Some knowledge about the environment can speed-up learning

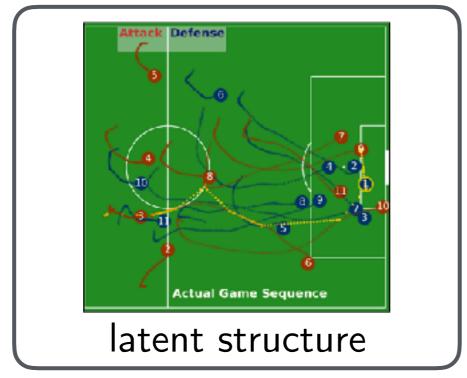












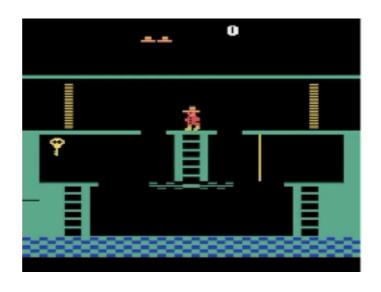
#### Given domain hierarchical structure...

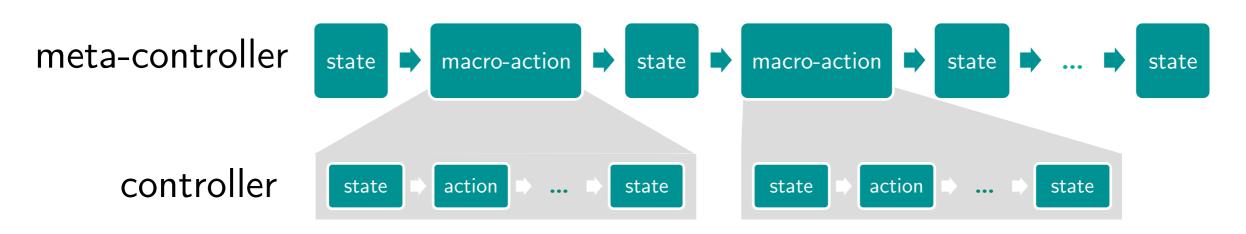
How can we improve data efficiency for imitation and reinforcement learning?

Hierarchical Imitation and Reinforcement Learning

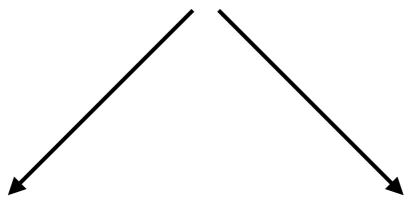
- LeJiangAgarwalDudíkYueDaumé - ICML 2018

# Hierarchical decision making

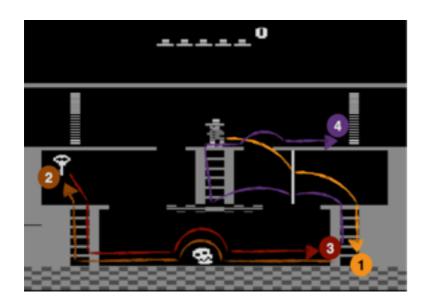




Alternative feedback mechanism more natural for domain experts?



High-level feedback



#### Navigation instruction:

Stair —> Get Key

—> Stair —> Open Door

#### Verify / "Lazy" Evaluation

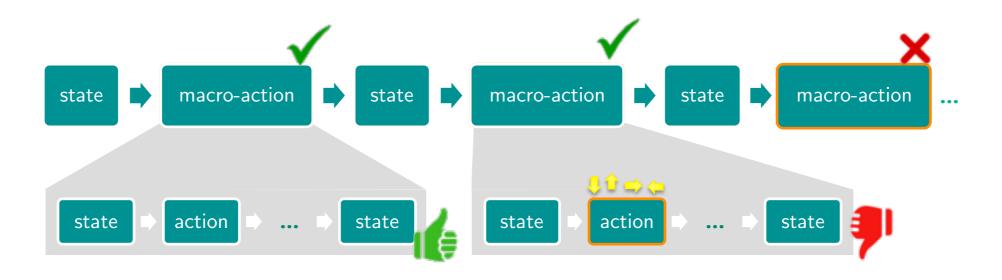


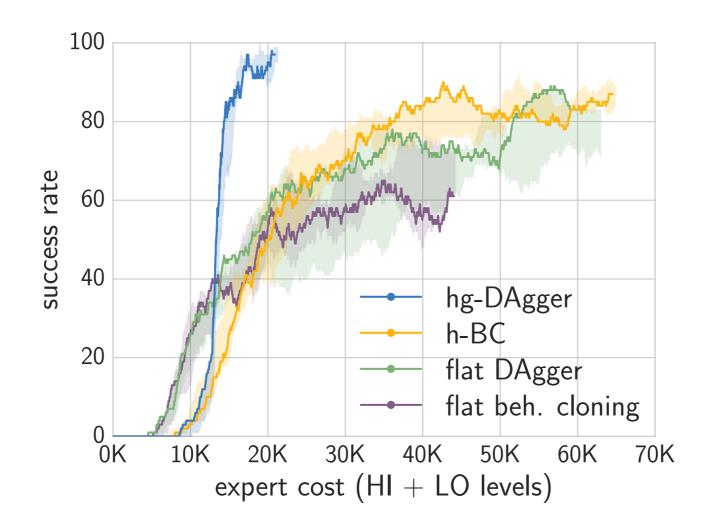




Macro-action completed?

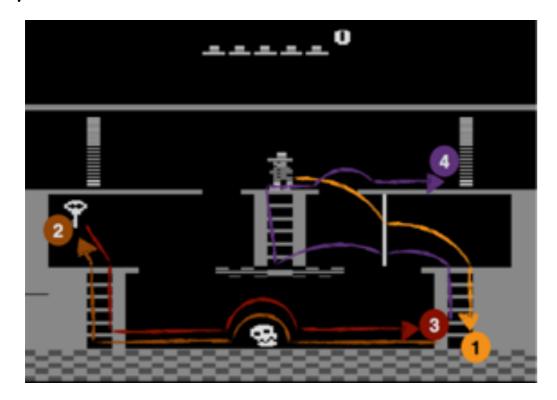
# Hierarchical imitation learning

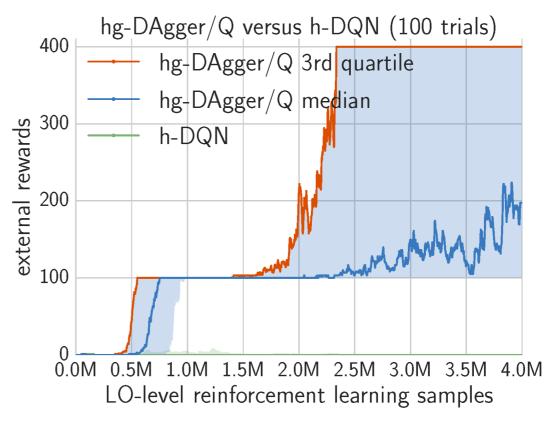




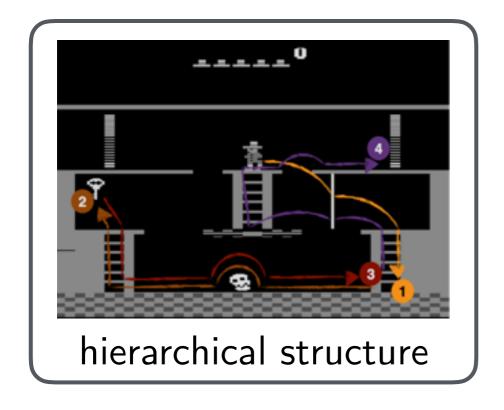
# Hierarchical imitation and reinforcement learning

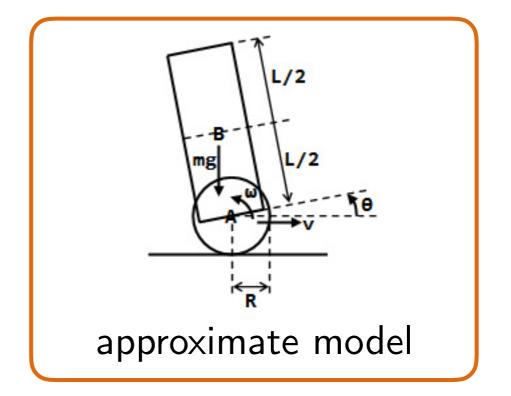
- IL for meta-controller (macro-actions)
- RL/IL for low-level policies

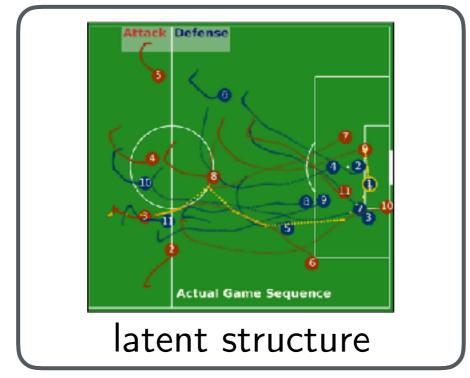




- More data-efficient than flat imitation learning
- Much faster learning than standard reinforcement learning



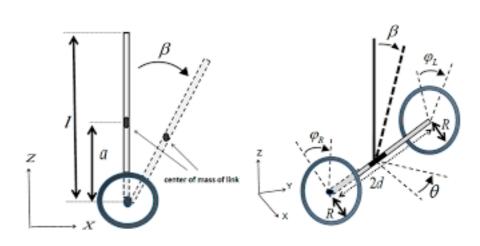




#### Approximate model

- Model-based RL: estimate model from data
- Robotics & Control: model from physics





$$\rho \ddot{w}_{1} + \rho x_{1} \ddot{\theta} + B \left( \frac{6w_{1} - 4w_{2} + w_{3}}{h^{4}} \right) - \rho w_{1} \dot{\theta}^{2} + \eta I \left( \frac{6w_{1} - 4w_{2} + w_{3}}{h^{4}} \right) = 0^{(24)}$$
for  $i = 2, 3, ..., n - 2$ 

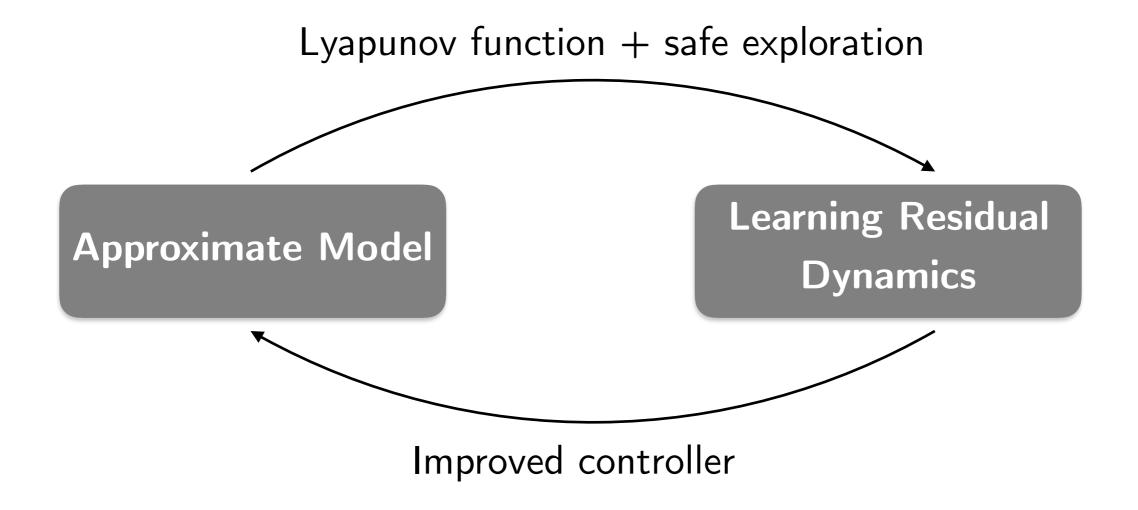
$$\rho \ddot{w}_{i} + \rho z_{i} \ddot{\theta} - \rho w_{i} \dot{\theta}^{2} + B \left( \frac{-4w_{i-1} + 6w_{i} - 4w_{i+1} + w_{i-2} + w_{i+2}}{h^{4}} \right) + \eta I \left( \frac{-4w_{i-1} + 6w_{i} - 4w_{i+1} + w_{i-2} + w_{i+2}}{h^{4}} \right) = 0$$
for  $i = n - 1$ 

$$\rho \ddot{w}_{n-1} + \rho z_{n-1} \ddot{\theta} - \rho w_{n-1} \dot{\theta}^{2} + EI \left( \frac{-4w_{n-2} + 5w_{n-1} - 6w_{n} + w_{n-3}}{h^{4}} \right) + \eta I \left( \frac{-4w_{n-2} + 5w_{n-1} - 6w_{n} + w_{n-3}}{h^{4}} \right) = 0$$
for  $i = n$ 

$$\rho \dot{w}_{1} + \rho z_{n} \ddot{\theta} - \rho w_{n} \dot{\theta}^{2} + B \left( \frac{-2w_{n-1} + 5w_{n} + w_{n-3}}{h^{4}} \right) + QI$$

Reinforcement Learning + Control: how to integrate model-based control and learning-based methods?

### Learning + model-based control



Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems

- Taylor\*Dorobantu\*LeYueAmes - IROS 2019

A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability

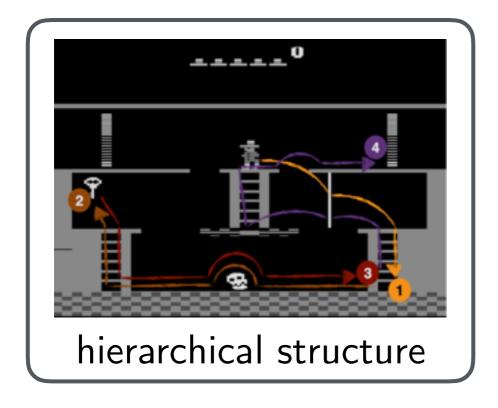
- Taylor\*Dorobantu\*KrisnamoothyLeYueAmes - CDC 2019

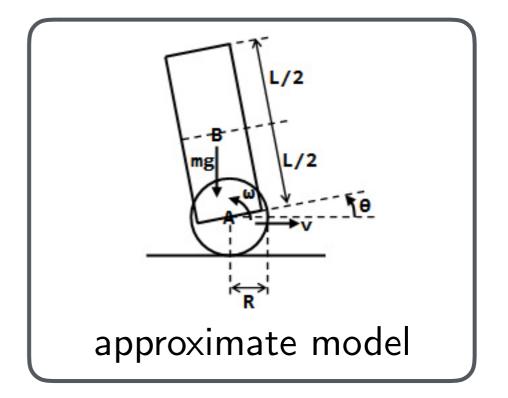
# Learning + model-based control

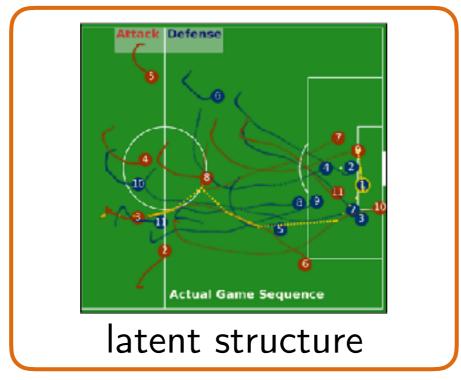


Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems

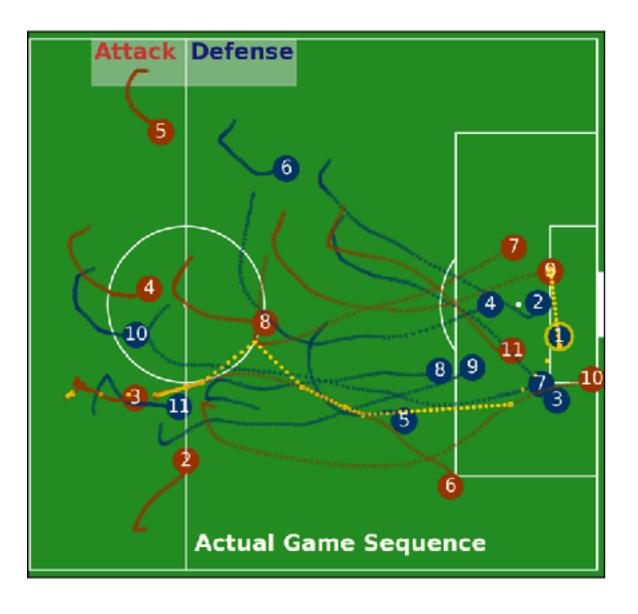
- Taylor\*Dorobantu\*LeYueAmes - IROS 2019

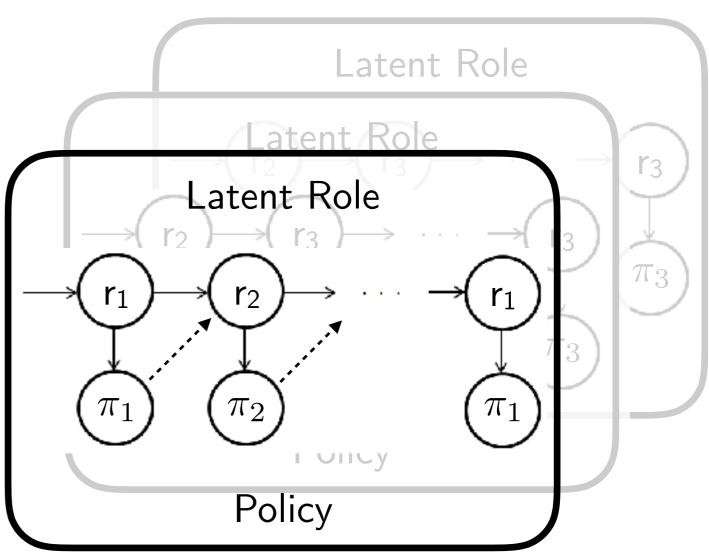




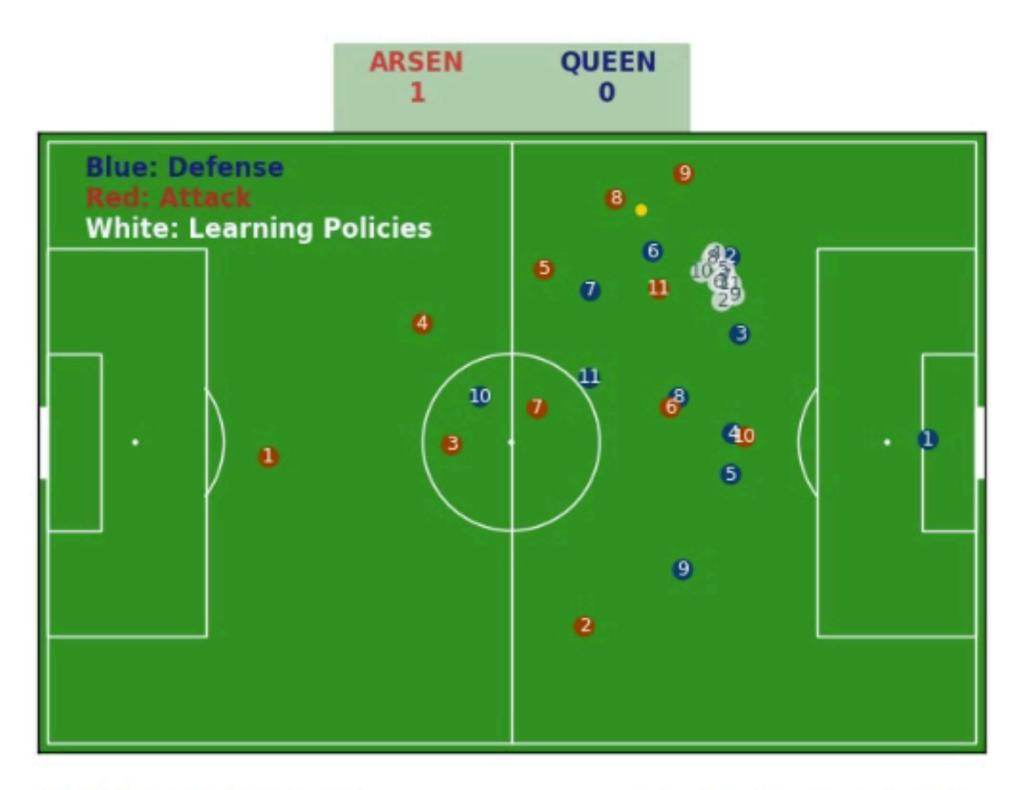


#### Latent structure model



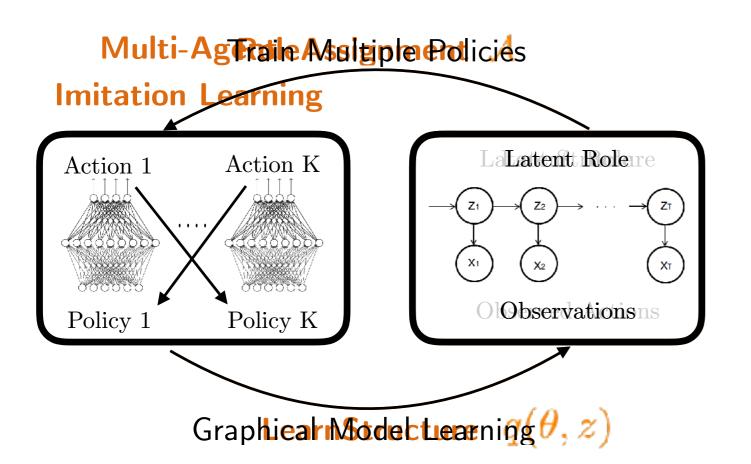


# Policy learning w/o latent structure



Match date: 04/05/2013

## Policy + latent model learning



- Policy learning: reduction to single-agent imitation learning
- Latent structure: unsupervised (stochastic) variational inference

Coordinated Multi-agent Imitation Learning

- LeYueCarrLucey - ICML 2017

#### Result on behavior modeling



Combining latent structure with policy learning leads to better performance and data-efficiency

English Premier League 2012-2013

Match date: 04/05/2013

Data-Driven Ghosting using Deep Imitation Learning

- LeCarrYueLucey - SSAC 2017 (Best Paper Award - runner up)

Data-Driven Ghosting

- CarrLeYue - US Patent App #15830710

current
RL & IL
methods

#### Needed to close the gap:

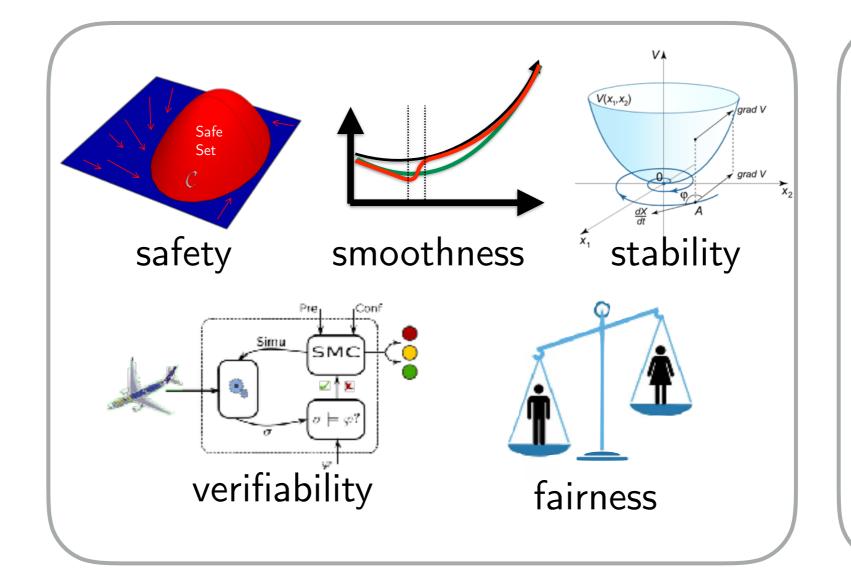
data efficiency realistic constraints

learning for real-world domains













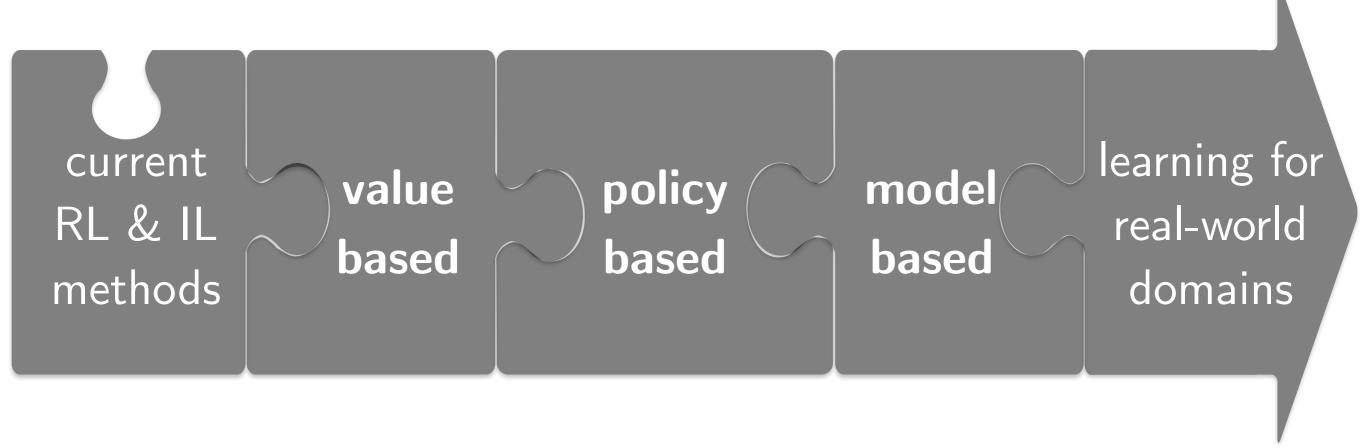


current RL & IL methods

Structured Policy Learning
=

domain knowledge + policy learning

learning for real-world domains





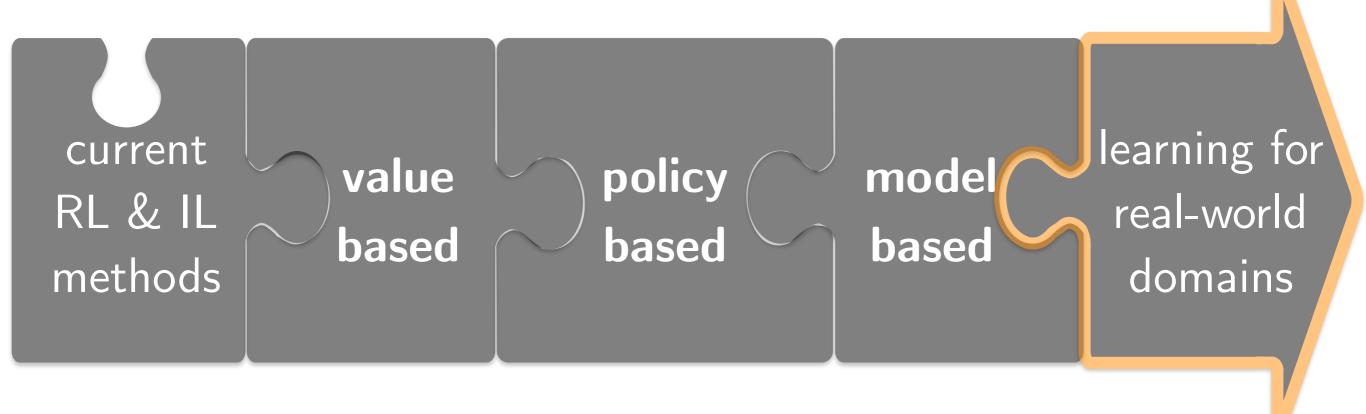
Value-based: impose constraints on overall performance



Policy-based: building structural constraints into policy class



Model-based: exploiting partial knowledge of the model





Generalization, unifying perspectives



Realistic benchmarks



Interfacing with other research areas

#### References

- [1] Imitation-Projected Policy Gradient for Programmatic Reinforcement Learning
  Hoang M. Le, Abhinav Verma, Yisong Yue, Swarat Chaudhuri NeurIPS 2019
- [2] Batch Policy Learning under Constraints
  Hoang M. Le, Cameron Voloshin, Yisong Yue ICML 2019
- [3] Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning Cameron Voloshin, **Hoang M. Le**, Nan Jiang, Yisong Yue (under review)
- [4] A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability
  Andrew J. Taylor, Victor Dorobantu, Meera Krishnamoothy, **Hoang M. Le**, Yisong Yue, Aaron Ames CDC 2019
- [5] Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems
  Andrew J. Taylor, Victor Dorobantu, **Hoang M. Le**, Yisong Yue, Aaron Ames IROS 2019
- Hierarchical Imitation and Reinforcement Learning

  Hoang M. Le, Nan Jiang, Alekh Agarwal, Miro Dudík, Yisong Yue, Hal Daumé ICML 2018
- [7] Coordinated Multi-Agent Imitation Learning
  Hoang M. Le, Yisong Yue, Peter Carr, Patrick Lucey
- [8] Data-Driven Ghosting using Deep Imitation Learning
  Hoang M. Le, Peter Carr, Yisong Yue, Patrick Lucey SSAC 2017
- [9] Smooth Imitation Learning for Online Sequence Prediction
  Hoang M. Le, Andrew Kang, Yisong Yue, Peter Carr ICML 2016
- [10] Learning Online Smooth Predictors for Real-time Camera Planning using Recurrent Decision Trees
  Jianhui Chen, **Hoang M. Le**, Peter Carr, Yisong Yue, James J. Little CVPR 2016



Yisong Yue



Adam Wierman



Anima Anandkumar



Hal Daumé III



Alekh Agarwal



Miro Dudík



Nan Jiang



Peter Carr



Cameron Voloshin



Swarat Chaudhuri



Abhinav Verma



Luciana Cendon



Victor Dorobantu



Andrew Taylor



Patrick Lucey



Aaron Ames



Jim Little



Jimmy Chen



Andrew Kang